期刊文献+

基于多模型SVM的多模态过程故障检测

Fault Detection of Multi-Modal Process Based on Multi-Model SVM
下载PDF
导出
摘要 为了有效改进支持向量机(SVM)在工业过程中的故障检测性能,提出一种基于多模型SVM(multi-model SVM,MM-SVM)的多模态过程故障检测方法.首先,运用局部概率密度方法对多模态数据进行预处理,消除多模态数据对故障检测性能的影响;其次,通过改变SVM的核参数建立多个SVM模型进行故障分类;最后,将多个SVM模型的分类结果进行整合,通过概率大小定义数据类别,实现对故障的有效检测.将该方法应用于多模态数值例子和田纳西-伊斯曼多模态过程,并与PCA、KPCA和SVM方法作比较,实验结果进一步验证了该方法的有效性. To effectively improve the fault detection performance of support vector machine(SVM)in industrial processes,a fault detection method of multi-modal process based on multi-model SVM(MM-SVM)was proposed.Firstly,the local probability density method was applied to preprocess the multi-modal data to eliminate the influence of the multi-modal data on fault detection performance.Then,multiple SVM models for fault classification were established by changing the kernel parameters of SVM.Finally,the classification results of multiple SVM models were integrated,and the data category was defined by the probability to achieve effective fault detection.The proposed method was applied to a multi-modal numerical example and the Tennessee-Eastman multi-modal process.Compared with PCA,KPCA and SVM,the experimental results further verify the effectiveness of the proposed method.
作者 郭金玉 李涛 李元 GUO Jinyu;LI Tao;LI Yuan(Shenyang University of Chemical Technology,Shenyang,110142,China)
出处 《沈阳化工大学学报》 CAS 2023年第6期533-541,共9页 Journal of Shenyang University of Chemical Technology
基金 国家自然科学基金项目(62273242) 辽宁省教育厅项目(JYTMS20231516)。
关键词 支持向量机 核参数 局部概率密度 多模态过程 故障检测 support vector machine kernel parameters local probability density multi-modal process fault detection
  • 相关文献

参考文献6

二级参考文献49

  • 1刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 2VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K, et al. A review of process fault detection and diagnosis part III: Process history based methods[J]. Com- puters and Chemical Engineering, 2003, 27(3): 327-346. 被引量:1
  • 3KANO M, NAGAO K, HASEBE S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers and Chemical Engineering, 2002, 26:161-174. 被引量:1
  • 4LEE D S, PARK J M, VANROLLEGHEM P A. Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor[J]. Journal of Biotechnology, 2005, 116(2): 19-210. 被引量:1
  • 5LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers and Chemical Engineering, 2004, 28(9): 1837-1847. 被引量:1
  • 6SCHOLKOPF B, SMOLA A J, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299-1319. 被引量:1
  • 7BAUDAT G, ANOUAR E CHOI S W, et al. Feature vector selection and projection using kernels[J]. Neurocomputing, 2003, 55(1-2):21-38. 被引量:1
  • 8CHIANG L H, RUSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[M]. London: Spring-Verlag London Limited, 2001. 被引量:1
  • 9CHEN J H, LIAO C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2):277-289. 被引量:1
  • 10Jacken J E, Govind S M. Control procedures for residuals associated with principal component analysis[J]. Technometrics, 1979, 21: 341-349. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部