期刊文献+

基于端边云协同体系的联邦学习模型训练与优化

Training and Optimization of Federated Learning Models Based on End Edge Cloud Collaborative System
下载PDF
导出
摘要 针对联邦学习训练模型容易受到数据属性影响的问题,提出基于端边云协同体系的联邦学习模型训练与优化方法,该方法引入可信度和动态学习率实现全局模型参数的自学习和自优化。实验表明,与其他算法相比,所提算法充分考虑边缘端的可信度,可防止由于数据分布或者质量问题所导致全局模型参数快速变化所导致准确率快速下降的问题;另外,由于引入了动态学习率,全局模型在聚合时可依据本地模型的误差进行学习率的自适应调整,在一定程度上实现全局参数更新速度和算法稳定度的平衡。 In response to the problem that federated learning training models are easily affected by data attributes,a federated learning model training and optimization method based on end-edge-cloud collaborative system is proposed.This method introduces credibility and dynamic learning rate to achieve self-learning and self-optimization of global model parameters.Experiments have shown that compared with other algorithms,the proposed algorithm fully considers the credibility of the edge,which can prevent the rapid decrease in accuracy caused by rapid changes in global model parameters due to data distribution or quality issues.In addition,due to the introduction of dynamic learning rate,the global model can adaptively adjust the learning rate based on the error of the local model during aggregation,which to a certain extent balances the global parameter update speed and algorithm stability.
作者 陈少权 杜翠凤 张振 CHEN Shaoquan;DU Cuifeng;ZHANG Zhen(CETC Potevio Science&Technology Co.,Ltd.,Guangzhou 510310,China)
出处 《移动通信》 2024年第6期91-96,共6页 Mobile Communications
基金 广东省海洋经济发展(海洋六大产业)专项资金项目“面向海洋产业的探测通信一体化立体海洋无线网络系统研究”(粤自然资合[2023]24号)。
关键词 端边云协同 模型聚合 联邦学习 可信度 动态学习率 end-edge-cloud collaboration model aggregation federated learning credibility dynamic learning rate
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部