期刊文献+

雾霾天气下交通信号灯的识别

Identification of Traffic Lights in Haze Weather Conditions
下载PDF
导出
摘要 针对雾霾天气下交通信号灯定位准确率较低、图像增强时出现图像亮度不均匀的问题,该文提出一种基于改进的带色彩恢复的多尺度视网膜增强(Multi-Scale Retinex with Color Restoration,MSRCR)的雾霾天气下信号灯识别算法。首先利用改进的MSRCR算法对有雾图像进行预处理,校正图像亮度并丰富图像细节;再利用最大稳定极值区域(Maximally Stable Extremal Regions,MSER)算法以及信号灯的背板信息确定信号灯的位置;最后将定位区域转换至HSV空间进行信号灯识别。结果表明,该方法能够在雾霾条件下有效地定位及识别交通信号灯。 In order to solve the problems of low location accuracy of traffic lights and uneven brightness during image enhancement in haze weather,an improved Multi-Scale Retinex with Color Restoration(MSRCR)weather signal recognition algorithm based on color restoration is proposed in this paper.Firstly,the improved MSRCR algorithm is used to preprocess the foggy image to correct the brightness of the image and enrich the image details;then the Maximally Stable Extremal Region(MSER)algorithm and the backplane information of the signal lamp are used to determine the position of the signal l finally,the location area is converted to the HSV space for signal light recognition.The results show that this method can effectively locate and identify traffic lights under haze conditions.
作者 李慧淼 方振国 LI Huimiao;FANG Zhenguo
出处 《科技创新与应用》 2024年第19期35-38,42,共5页 Technology Innovation and Application
基金 安徽省提升专业服务十大新兴产业项目(2021fwxxcy039) 安徽省质量工程项目(2020jyxm1668) 安徽省基层教研室示范项目(2020SJSFJXZZ350)。
关键词 雾霾 图像增强 最大稳定极值区域 交通信号灯识别 MSRCR算法 haze image enhancement maximum stable extreme value region traffic light recognition MSRCR algorithm
  • 相关文献

参考文献13

二级参考文献96

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2陈基伟.椭圆直接拟合算法研究[J].工程勘察,2007,35(6):49-51. 被引量:21
  • 3Baker C, Urmson C, Darms M S, et al. Obstacle detection and tracking for the urban challenge [C]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10 ( 3 ): 475-485. 被引量:1
  • 4Hyunggi Cho, Paul E Rybski, Zhang Wende. Vision-based bi- cyclist detection and tracking for intelligent vehicles [C]. Cali- fornia, USA: IEEE Intelligent Vehicles Symposium, 2010: 454-461. 被引量:1
  • 5Kamijo S, Fujimura K, Shibayama Y. Pedestrian detection al- gorithm for on-board cameras of multi view angles [C]. Pro- ceedings of IEEE Intelligent Vehicles Symposium, 2010: 973-980. 被引量:1
  • 6Maldonado Bascon S, Acevedo Rodriguez J, Lafuente Arroyo S, et al. An optimization on pictogram identification for the road-sign recognition task using SVMs [J]. Computer Vision and IrnageUnderstanding, 2010, 114 (3): 373-383. 被引量:1
  • 7Andrzej Ruta,Li Yongmin, Liu Xiaohui. Real-time traffic sign recognition from video by class-specific discriminative features [J]. Pattern Recognition, 2010, 43 (1): 416-430. 被引量:1
  • 8Shen Yehu, Ozguner U, Redmill K, et al. A robust video based traffic light detection algorithm for intelligent vehicles [C]. IEEE Intelligent Vehicles Symposium, 2009: 521-526. 被引量:1
  • 9LU Kuo-Hao, WANG Chao-Ming, CHEN Shu-Yuan. Traffic light recognition [C]. Taipei: 18th IPPR Conference on Com- puter Vision, Graphics and Image Processing, 2005: 21-25. 被引量:1
  • 10Park Jin-Hyung, Jeong Charg-sung. Real-time signal light detec- tion [C]. Second International Conference on Future Generation Communication and Networking Symposia, 2008: 139-142. 被引量:1

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部