期刊文献+

脑电图信号多维度特性分析在癫痫病发作预测中的应用

Application of Multidimensional Characteristic Analysis of Electroencephalogram Signal in Epileptic Seizure Prediction
下载PDF
导出
摘要 癫痫患者的非线性脑电信号存在规律难以分类识别等困境。本研究基于卷积神经网络结合多种智能寻优算法,构建联合式脑电信号分类模型,并通过实验验证其收敛性和分类性能。模型不同的频率对大脑的刺激下均能准确地测试脑电信号对应的变化规律,并选取数据集对其收敛效率进行测试,联合算法从第10次迭代的收敛速度明显优于其余算法,到200代时仍具备较大优势。联合算法比传统的极限学习机分类效率高出约10%。综合来看,该模型在实际的诊断场景下对癫痫患者的脑电信号起到采集剖析分类等作用,对癫痫发作的诊断和预测具备一定的实用性和参考价值。 The nonlinear EEG signals of epilepsy patients face challenges such as difficulty in classifying and recognizing patterns.In view of this,this study constructs a joint EEG signal classification model based on convolutional neural networks combined with various intelligent optimization algorithms,and verifies its convergence and classification performance through experiments.The model can accurately test the corresponding changes in EEG signals under different frequencies of brain stimulation.And the convergence efficiency of the joint algorithm was tested by selecting a dataset.The convergence speed of the joint algorithm from the 10th iteration was significantly better than the other algorithms,and it still had a significant advantage in the 200th generation.The classification efficiency of the joint algorithm is about 10%higher than that of traditional extreme learning machines.Overall,this model has played a role in collecting,analyzing,and classifying the EEG signals of epilepsy patients in practical diagnostic scenarios,and has certain practicality and reference value for the diagnosis and prediction of seizures.
作者 努尔比亚·阿不拉江 阿地力江·阿布力米提 祖木来提·司马义 阿不都米吉提·阿吉 阿依夏·米吉提 古丽乃则尔·麦麦提 Nuerbiya·abulajiang;adilijiang·abulimiti;zumulaiti·simayi;abudoumijiti·aji;ayixia·mijiti;gulinaizeer·maimaiti(Department of Neurology,The First People's Hospital of Kashgar Region,Kashgar Xinjiang 844000,China)
出处 《生命科学仪器》 2024年第1期10-13,共4页 Life Science Instruments
基金 Q2SD课题:新疆喀什地区癫痫病流行学调查及危险因素分析,编号KS2021067。
关键词 癫痫 脑电信号 卷积神经网络 智能寻优算法 分类模型 Epilepsy Eeg signal Convolutional neural network Intelligent optimization algorithm Classification model
  • 相关文献

参考文献7

二级参考文献54

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部