期刊文献+

基于BO-BiGRU-Attention短期电力负荷预测

Short-term Electricity Load Forecasting with BiGRU-Attention Based on Bayesian Optimization
下载PDF
导出
摘要 电力系统的可靠供应对于工业、商业和居民的生活至关重要。为了满足电力需求并维持电力系统的稳定运行,提高短期电力负荷预测的准确性和可靠性尤为关键;针对负荷数据存在复杂的非线性特性,该文提出一种基于贝叶斯优化算法的双向门控循环单元和注意力机制(BO-BiGRU-Attention)的混合预测模型对短期电力负荷进行精准预测。首先,使用Min-Max Normalization方法对负荷数据进行归一化处理。其次,利用BiGRU网络捕获序列中的长期依赖关系和上下文信息,结合注意力机制,通过在输入序列的不同部分给予不同的权重,从而突出关键特征。最后,针对BiGRU-Attention模型的超参数难以选取最优解的问题,引入贝叶斯优化算法对BiGRU-Attention模型的超参数进行寻优,完成短期电力负荷的预测。采用印度北部某地区的电力负荷数据进行预测分析,仿真结果表明,BO-BiGRU-Attention网络表现优于其他模型,各误差评价指标最小,其中MAE、RMSE和MAPE分别为56.67,73.49和1.16%,预测精度达到了99.47%。 The reliable supply of the power system is essential for industry,commerce and the life of residents.In order to meet the power demand and maintain the stable operation of the power system,it is especially critical to improve the accuracy and reliability of short-term power load forecasting.In view of the complex nonlinear characteristics of the load data,we propose a hybrid forecasting model based on Bayesian optimization algorithm with bidirectional gated recurrent unit and attention mechanism(BO-BiGRU-Attention)to accurately forecast the short-term power load.Firstly,the load data are normalized using the Min-Max Normalization method.Secondly,the BiGRU network is used to capture the long-term dependencies and contextual information in the sequences,and combined with the attention mechanism,the key features are highlighted by giving different weights in different parts of the input sequences.Finally,to address the problem that it is difficult to select the optimal solution for the hyperparameters of the BiGRU-Attention model,a Bayesian optimization algorithm is introduced to optimize the hyperparameters of the BiGRU-Attention model to complete the prediction of short-term electricity load.Electricity load data of a region in north India is used for forecasting analysis,and the simulation results show that the BO-BiGRU-Attention network outperforms the other models,with the minimum of each error evaluation index,in which the MAE,RMSE,and MAPE are 56.67,73.49,and 1.16%,respectively,and the prediction accuracy reaches 99.47%.
作者 包广斌 张瑞 彭璐 李明 赵怀森 BAO Guang-bin;ZHANG Rui;PENG Lu;LI Ming;ZHAO Huai-sen(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《计算机技术与发展》 2024年第6期201-206,共6页 Computer Technology and Development
基金 国家自然科学基金(51967012) 甘肃省自然科学基金项目(18JR3RA156)。
关键词 电力系统 负荷预测 贝叶斯优化算法 双向门控循坏单元 注意力机制 power system load forecasting Bayesian optimization algorithm bi-directional gated bad-cycle unit attention mechanism
  • 相关文献

参考文献11

二级参考文献156

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部