摘要
为了探究高活性金属含能微球的制备工艺以及燃烧性能,以Viton为黏结剂,聚四氟乙烯(PTFE)、硼粉(B)和铝粉(Al)为高能组分,采用乳液自组装技术制备了Al/B/PTFE含能微球,并对溶剂的挥发温度、乳化剂的种类、水相和油相的体积比和搅拌速度等工艺进行了优化;采用扫描电子显微镜(SEM)对Al/B/PTFE含能微球形貌进行了表征;采用TG-DSC法分析了Al/B/PTFE含能微球的热分解性能;通过高速摄影和密闭爆发器表征了Al/B/PTFE含能微球的燃烧反应性能。结果表面,水浴温度为25℃、乳化剂为PVA、水油比为80∶30和搅拌速度为700 r/min是Al/B/PTFE含能微球的最佳制备工艺;所制备的Al/B/PTFE含能微球的粒径均匀、球形度高且粒径可控,主要粒径分布范围在约300~900μm;微球的流散性、反应热、燃烧火焰面积和压力输出性能随着粒径的增加,出现先增加后减弱的现象;Al/B/PTFE含能微球的最大反应热,最大火焰面积和最高峰值压力为1097.97 J/g,186.06 cm^(2)和213.3 kPa,分别是物理混合样品的1.77倍、5.16倍和1.37倍。
To explore the preparation process and combustion performance of high active metal energetic microspheres,Al/B/PTFE energetic microspheres were prepared by emulsion self-assembly technology with Viton as binder,polytetrafluoroethylene(PTFE),boron powder(B)and aluminum powder(Al)as high-energy components.The volatilization temperature of solvent,the type of emulsifier,the volume ratio of water phase to oil phase and stirring speed were optimized.The morphology of Al/B/PTFE energetic microspheres was characterized by scanning electron microscopy(SEM).The thermal decomposition properties of Al/B/PTFE energetic microspheres were analyzed by TG-DSC method.The combustion reaction performance of the microspheres was characterized by high-speed photography and closed explosive bomb device.The results show that the optimum preparation process of Al/B/PTFE energetic microspheres is water bath temperature of 25℃,emulsifier of PVA,water-oil volume ratio of 80∶30 and stirring speed of 700 r/min.The prepared Al/B/PTFE energetic microspheres have uniform particle size,high sphericity and controllable particle size,and the main particle size distribution range is about 300~900μm.The dispersion,reaction heat,combustion flame area and pressure output performance of the microspheres increase first and then decrease with an increase in the particle size.The maximum reaction heat,the maximum flame area,and the maximum peak pressure of Al/B/PTFE energetic microspheres are 1097.97 J/g,186.06 cm^(2) and 213.3 kPa,which are 1.77 times,5.16 times and 1.37 times of the physical mixed samples,respectively.
作者
师鹏翔
王建
陈杰
张行泉
邓勇军
王军
SHI Peng-Xiang;WANG Jian;CHEN Jie;ZHANG Xing-Quan;DENG Yong-Jun;WANG Jun(Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang Sichuan 621000,China;Analytical and Testing Center,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,Mianyang Sichuan 621010,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2024年第5期453-460,I0005,共9页
Chinese Journal of Explosives & Propellants
基金
国家自然科学基金(No.T2222027
No.12202416)。