期刊文献+

膝关节骨巨细胞瘤刮除填充术后继发骨关节炎的危险因素分析及预测模型的建立

Analysis of risk factors and establishment of predictive model for secondary osteoarthritis after the curettage and filling surgery of giant cell tumor of bone around knee joint
下载PDF
导出
摘要 目的:分析膝关节周围骨巨细胞瘤(giant cell tumor of bone, GCTB)局灶刮除联合填充术后出现骨关节炎的危险因素,建立预测模型并进行验证。方法:2017年7月至2022年7月,回顾性分析我院骨科收治的膝关节周围GCTB患者的临床资料,根据术后是否继发骨关节炎,将患者分为有骨关节炎组和无骨关节炎组。对两组患者的年龄、性别、肿瘤位置、Campanacci分级、视觉模拟评分(visual analogue scale, VAS)、美国骨肿瘤协会(Musculoskeletal Tumor Society, MSTS)功能评分、软骨下是否植骨、软骨下残留骨厚度、肿瘤横断面百分比进行单因素分析和多因素Logistic回归分析,通过绘制列线图建立预测模型并进行模型内部验证,通过ROC曲线下面积(area under the ROC curve, AUC)和校准曲线评价列线图预测模型的预测效能,最终使用决策曲线分析(decision curve analysis, DCA)和临床影响曲线(clinical impact curve, CIC)评估该模型的临床效用。结果:共纳入87例患者,平均年龄(34.9±9.6)岁(18~54岁),随访时间为17~68个月,平均40个月。无骨关节炎组64人,有骨关节炎组23人。单因素Logistic回归分析显示,两组患者的年龄、性别、肿瘤位置、Campanacci分级、VAS评分、MSTS评分比较差异均无统计学意义(P均>0.05);而两组软骨下是否植骨、软骨下残留骨厚度、肿瘤横断面百分比比较差异均有统计学意义(P均<0.05)。多因素Logistic回归分析显示,软骨下是否植骨、软骨下残留骨厚度、肿瘤横断面百分比是术后继发骨关节炎的独立危险因素。通过绘制列线图建立预测模型并进行模型内部验证,模型的表观曲线与校准后的偏差曲线吻合较好,预测模型的AUC为0.827(95%CI:0.743~0.911)。DCA曲线显示,在0~0.5的阈值区间具有最大效益。CIC曲线表明,预测模型可以在阈值概率范围内有效区分出膝关节周围GCTB术后继发骨关节炎的高危患者。结论:基于软骨下是否植骨 Objective:To analyse the risk factors affecting secondary osteoarthritis after focal curettage combined with filling surgery for giant cell tumor of bone(GCTB)around the knee joint and to develop and validate a predictive model.Methods:From July 2017 to July 2022,a retrospective analysis was conducted on the clinical data of patients with GCTB around the knee joint admitted to the orthopedics department of our hospital.Based on whether there was secondary osteoarthritis after surgery,the patients were divided into a group with osteoarthritis and a group without osteoarthritis.Univariate and multivariate Logistic regression analyses were conducted on the age,gender,tumor location,Campanacci grading,visual analogue scale(VAS),Musculoskeletal Tumor Society(MSTS)scoring system,subchondral bone grafting,residual bone thickness under cartilage,and tumor cross-sectional percentage in two groups of patients.Establish a prediction model by drawing a nomogram and conduct internal validation of the model.Evaluate the predictive performance of the nomogram prediction model through the area under the ROC curve(AUC)and calibration curve.Finally,evaluate the clinical utility of the model using decision curve analysis(DCA)and clinical impact curve(CIC).Results:A total of 87 patients were included,with an average age of(34.9±9.6)years old(18~54 years old).The follow-up period was 17~68 months,with an average of 40 months.Among them,there were 64 people in the group without osteoarthritis and 23 people in the group with osteoarthritis.Univariate Logistic regression analysis showed that there was no statistically significant difference in age,gender,tumor location,Campanacci grading,VAS score,and MSTS score between the two groups of patients(P>0.05).There were statistically significant differences between the two groups in terms of subchondral bone grafting,residual bone thickness under cartilage,and tumor cross-sectional percentage(P<0.05).Multivariate Logistic regression analysis showed that subchondral bone grafting,residual bo
作者 王林 高嵩涛 刘继军 罗建平 牛科润 张俊娟 WANG Lin;GAO Songtao;LIU Jijun;LUO Jianping;NIU Kerun;ZHANG Junjuan(Department of Orthopedics,Henan Provincial People's Hospital,Henan Zhengzhou 450003,China)
出处 《现代肿瘤医学》 CAS 2024年第12期2255-2261,共7页 Journal of Modern Oncology
基金 河南省医学科技攻关计划普通项目(编号:201403222)。
关键词 膝关节 骨巨细胞瘤 刮除术 骨关节炎 列线图 knee joint giant cell tumor of bone curettage osteoarthritis nomogram
  • 相关文献

参考文献6

二级参考文献97

共引文献564

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部