摘要
BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestational diabetes mellitus(GDM)is significantly higher than that born to healthy pregnant women.However,traditional methods for the diagnosis of LGA have limitations.Therefore,this study aims to establish a predictive model that can effectively identify women with GDM who are at risk of delivering LGA infants.AIM To develop and validate a nomogram prediction model of delivering LGA infants among pregnant women with GDM,and provide strategies for the effective prevention and timely intervention of LGA.METHODS The multivariable prediction model was developed by carrying out the following steps.First,the variables that were associated with LGA risk in pregnant women with GDM were screened by univariate analyses,for which the P value was<0.10.Subsequently,Least Absolute Shrinkage and Selection Operator regression was fit using ten cross-validations,and the optimal combination factors were se-lected by choosing lambda 1se as the criterion.The final predictors were deter-mined by multiple backward stepwise logistic regression analysis,in which only the independent variables were associated with LGA risk,with a P value<0.05.Finally,a risk prediction model was established and subsequently evaluated by using area under the receiver operating characteristic curve,calibration curve and decision curve analyses.RESULTS After using a multistep screening method,we establish a predictive model.Several risk factors for delivering an LGA infant were identified(P<0.01),including weight gain during pregnancy,parity,triglyceride-glucose index,free tetraiodothyronine level,abdominal circumference,alanine transaminase-aspartate aminotransferase ratio and weight at 24 gestational weeks.The nomogram’s prediction ability was supported by the area under the curve(0.703,0.709,and 0.699 for the training cohort,validation cohort,and t
基金
Supported by National Natural Science Foundation of China,No.81870546
Nanjing Medical Science and Technique Development Foundation,No.YKK23151
Science and Technology Development Foundation Item of Nanjing Medical University,No.NMUB20210117.