期刊文献+

Generalized Embedding Machines for Recommender Systems

原文传递
导出
摘要 Factorization machine (FM) is an effective model for feature-based recommendation that utilizes inner products to capture second-order feature interactions. However, one of the major drawbacks of FM is that it cannot capture complex high-order interaction signals. A common solution is to change the interaction function, such as stacking deep neural networks on the top level of FM. In this work, we propose an alternative approach to model high-order interaction signals at the embedding level, namely generalized embedding machine (GEM). The embedding used in GEM encodes not only the information from the feature itself but also the information from other correlated features. Under such a situation, the embedding becomes high-order. Then we can incorporate GEM with FM and even its advanced variants to perform feature interactions. More specifically, in this paper, we utilize graph convolution networks (GCN) to generate high-order embeddings. We integrate GEM with several FM-based models and conduct extensive experiments on two real-world datasets. The results demonstrate significant improvement of GEM over the corresponding baselines.
出处 《Machine Intelligence Research》 EI CSCD 2024年第3期571-584,共14页 机器智能研究(英文版)
基金 supported by National Natural Science Foundation of China(Nos.62032013 and 61972078) the Fundamental Research Funds for the Central Universities,China(No.N2217004).
  • 相关文献

参考文献2

二级参考文献6

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部