摘要
为降低新一代通用视频编码标准(Versatile Video Coding,VVC)的计算复杂度,提出了一种基于统计分析的仿射运动估计(Affine Motion Estimation,AME)快速算法。从加速AME过程的角度出发,首先摒弃AME的3种运动矢量(Motion Vector,MV)精度中的整像素和1/16像素精度,保留1/4像素精度;其次利用迭代次数与量化参数(Quantization Parameter,QP)、slice类型以及编码单元(Coding Unit,CU)大小的关系,得到一个迭代次数的自适应计算式来减少AME迭代次数;然后将细粒度搜索(Fine Granularity Search,FGS)算法中CU 4个角落的4个整像素用2个对角分像素进行替代;最后运用绝对变换差和(Sum of Absolute Transform Difference,SATD)代价来替代率失真(Rate Distortion Optimization,RDO)代价。实验结果表明,与H.266/VVC参考软件VTM-10.0相比,提出的算法在低延迟(Low Delay B,LDB)和随机访问(Random Access,RA)配置下分别节省了8.34%和8.83%的时间,与此同时性能损失仅为0.10%和0.12%。
To reduce the computational complexity of the new generation video coding standard-versatile video coding(VVC),a fast affine motion estimation(AME)calculation method based on statistical analysis is proposed.In the proposed method,we first abandon the integer pixel and 1/16-pixel accuracy,while retaining 1/4-pixel accuracy of the three motion vector(MV)accuracies.Secondly,we build the relationship between the iterations and quantization parameters(QP),slice type,and coding unit(CU)size to obtain an adaptive formula for reducing the number of iterations in AME.Then,the four integer pixels in the four corners of CU in the fine granularity search(FGS)algorithm are replaced by two diagonal sub pixels.Finally,the sum of absolute transform difference(SATD)cost is used to replace the rate distortion optimization(RDO)cost.Experimental results show that compared with the H.266/VVC reference software VTM-10.0,the proposed algorithm saves 8.34%and 8.83%of time in low delay B(LDB)and random access(RA)configurations,while the performance loss is only 0.10%and 0.12%,respectively.
作者
钟煜城
黄晓峰
牛伟宏
崔燕
ZHONG Yucheng;HUANG Xiaofeng;NIU Weihong;CUI Yan(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China;Zhejiang Economic Information Center,Hangzhou 310007,China)
出处
《计算机科学》
CSCD
北大核心
2024年第S01期474-481,共8页
Computer Science
基金
国家电网有限公司总部管理科技项目(5700-202325308A-1-1-ZN)。
关键词
通用视频编码
仿射运动估计
像素精度
细粒度搜索
绝对变换差和
Versatile video coding
Affine motion estimation
Pixel accuracy
Fine granularity search
Sum of absolute transform difference