期刊文献+

双重轻量化PCB缺陷检测算法研究

Research on Dual Lightweight PCB Defect Detection Algorithm
下载PDF
导出
摘要 针对PCB缺陷检测方法存在检测速度慢、对部署设备要求高等问题,本文提出一种双重轻量化PCB缺陷检测算法。首先在YOLOv5主干网络中采用轻量化模块C3Ghost;然后利用GSConv模块和C3GS模块搭建特征融合网络,用来获取主干网络丢失的部分语义信息和提高网络检测速度;最后利用多任务全局通道剪枝修剪对网络精度影响较小的通道,进一步减少模型的参数量和计算量。该算法在PKU-Market-PCB数据集上进行测试,平均精度值为98.9%、模型大小为5.2M、模型参数量为2393469、检测时间为3.3ms。对比原算法,其模型大小、模型参数量和检测时间分别减少64%、66%和25%。 This paper proposes a dual lightweight PCB defect detection algorithm to address the issues of slow detection speed and high requirements for deployment equipment in PCB defect detection methods.Firstly,a lightweight module C3Ghost is adopted in the YOLOv5 backbone network.Then,a feature fusion network is constructed using the GSConv module and C3GS module to obtain partial semantic information lost in the backbone network and improve network detection speed.Finally,multi task global channel pruning is used to prune channels that have a small impact on network accuracy,further reducing the model's parameter and computational complexity.This algorithm was tested on the PKU-Market-PCB dataset,with an average accuracy of 98.9%,a model size of 5.2M,a model parameter count of 2393469,and a detection time of 3.3ms.Compared with the original algorithm,its model size,model parameter count,and detection time were reduced by 64%,66%,and 25%,respectively.
作者 杨洋 陈鑫 YANG Yang;CHEN Xin(Department of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,China,341000)
出处 《福建电脑》 2024年第6期15-20,共6页 Journal of Fujian Computer
基金 江西省研究生创新专项(No.YC2023-S662)资助。
关键词 PCB缺陷检测 双重轻量化 C3Ghost模块 通道剪枝 PCB Defect Detection Dual Lightweight C3Ghost Module Channel Pruning
  • 相关文献

参考文献5

二级参考文献31

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部