摘要
【目的】为研究地铁连续刚构桥上无砟轨道无缝线路纵向受力与变形规律,对地铁连续刚构桥上无砟轨道无缝线路设计改进、运营养护维修提供理论指导。【方法】根据梁-板-轨相互作用原理,建立地铁连续刚构桥上整体道床式无砟轨道无缝线路空间耦合模型,计算伸缩、挠曲、制动、断轨工况下轨道结构和桥梁纵向力及位移,并对轨道结构静力特性进行对比分析,为地铁连续刚构桥上无缝线路轨道结构设计提供参考。【结果】结果表明:双线列车荷载中点与中部梁端处重合时为列车垂向荷载最不利工况,此时钢轨纵向力与钢轨、桥梁纵向位移均为最大,均出现在中部梁端附近,数值分别为70.3 kN与0.6,0.8 mm;双线制动荷载列车尾部位于两侧梁端时为列车制动荷载最不利工况,此时钢轨纵向力与钢轨、桥梁纵向位移均为最大,数值分别为107.8 kN与1.6,1.7 mm。【结论】伸缩力作用下各个端部桥缝处为薄弱部位,在平时养护中应特别注意梁端部桥缝处轨道结构,防止因伸缩力过大而产生断轨;钢轨发生断轨时,在断缝处纵向力、纵向位移均发生突变,严重影响线路行车安全。
【Objective】In order to study the longitudinal force and deformation law of CWR of ballastless track on the continuous rigid bridge of the metro,and to provide theoretical guidance for the design improvement,operation and maintenance.【Method】Based on the principle of beam-plate-rail interaction,a spatial fine coupling model of CWR of the integral track bed type ballastless track on the continuous rigid bridge of the metro was established,and under stretching,bending,braking and broken rail conditions,the displacementtrack and longitudinal force of track structure and bridge were calculated,and the static characteristics of the track structure were compared and analyzed.This paper provides a reference for the design of CWR track structure on continuous rigid bridge of metro.【Result】The results show that when the midpoint of the double-line train load coincides with the end of the middle beam,the vertical load of the train is the most unfavorable working condition,and the force of the rail and the displacement of the rail and bridge are the largest,and the values are 70.3 kN,0.6 mm and 0.8 mm,respectively.When the tail of the double-line brake load train is located at the end of the beams on both sides,the most unfavorable working condition of the train braking load,at this time,the longitudinal force of the rail and the longitudinal displacement of the rail and the bridge are the largest,and the values are 107.8 kN,1.6 mm and 1.7 mm,respectively.【Conclusion】Under expansion force,each end bridge joint is a weak part,and attention should be paid to the structure at the end bridge joint of the beam in the usual maintenance to prevent rail breakage due to excessive expansion force;When the rail is broken under cooling conditions,the longitudinal force and longitudinal displacement of the broken rail are abruptly changed at the fracture,which seriously affects the safety of the line.
作者
张鹏飞
江浩宇
胡达贵
Zhang Pengfei;Jiang Haoyu;Hu Dagui(State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure,East China Jiaotong University,Nanchang 330013,China)
出处
《华东交通大学学报》
2024年第2期64-71,共8页
Journal of East China Jiaotong University
基金
国家自然科学基金项目(52178425,52368063)
江西省科技专项(20223AEI91004)
江西省高层次高技能领军人才培养工程项目(1600223003)。
关键词
地铁连续刚构桥
整体道床
桥上无缝线路
纵向力
metro continuous rigid bridge
integral track bed
continuous welded rail on the bridge
longitudinal force