期刊文献+

燃料电池极板过渡区结构的优化设计

Optimal design of the transition zone structure of fuel cell plate
下载PDF
导出
摘要 为解决质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)反应区流道燃料分配不均匀性,采用计算流体力学方法对流道燃料流动进行仿真,采用变异系数对不同方案进行评价,研究过渡区中圆柱体积占比、圆柱排列方式、圆柱到流道距离、过渡区圆柱开孔率对燃料分配均匀性的影响。结果表明:采用圆柱导流的燃料分配均匀性优于导流道导流;过渡区圆柱采用正方形排列时燃料分配均匀性最佳;增加圆柱到流道的距离,各流道燃料分配均匀性呈现先升高后下降的趋势,距离为3 mm时均匀性较好;过渡区开孔率约为11.4%时燃料分配均匀性较好,过大过小都会造成分配均匀性恶化。 To solve the problem of uneven fuel distribution in the reaction zone flow channel of proton exchange membrane fuel cells(PEMFC),computational fluid dynamics method is used to simulate the fuel flow in the flow channel.The coefficient of variation is used to evaluate different schemes,and the effects of cylinder volume ratio,cylinder arrangement,cylinder to channel distance,and cylinder porosity on fuel distribution uniformity in the transition zone are studied.The research results indicate that the fuel distribution uniformity using cylindrical flow guide is better than that using flow guide channels.The transition zone cylinders are arranged in a square shape for optimal distribution uniformity.By increasing the distance between the cylinder and the flow channel,the fuel distribution uniformity in each channel shows a trend of first increasing and then decreasing.The uniformity is better when the distance is 3 mm.When the porosity of the transition zone is about 11.4%,the fuel distribution uniformity is better.Both too large and too small can cause a deterioration of the distribution uniformity.
作者 赵明 李国祥 王桂华 白书战 ZHAO Ming;LI Guoxiang;WANG Guihua;BAI Shuzhan(School of Energy and Power Engineering,Shandong University,Jinan 250061,China)
出处 《内燃机与动力装置》 2024年第2期11-18,27,共9页 Internal Combustion Engine & Powerplant
基金 山东省重点研发计划项目资助(2020CXGC010404)。
关键词 PEMFC 极板 数值模拟 流场设计 性能优化 PEMFC electrode plate numerical simulation flow field design performance optimization
  • 相关文献

参考文献16

  • 1邱成..质子交换膜燃料电池平行流场水管理研究[D].浙江工业大学,2013:
  • 2刘斌,白书战.流道宽度和脊宽度对燃料电池极板流通特性的影响[J].内燃机与动力装置,2023,40(2):36-41. 被引量:1
  • 3陈耀..面向强化传质的燃料电池双极板进气流场设计[D].湖南理工学院,2021:
  • 4钱彩霞..高温质子交换膜燃料电池的模拟与优化[D].武汉理工大学,2010:
  • 5刘小波..质子交换膜燃料电池热分布及性能研究[D].重庆理工大学,2019:
  • 6张馨予..质子交换膜燃料电池多物理场数值模拟研究[D].吉林建筑大学,2016:
  • 7王文斌,官镇,朱晓春,高正远,曹孟雪,白书战.基于热-机耦合的燃料电池极板结构优化[J].内燃机与动力装置,2023,40(4):44-54. 被引量:1
  • 8贾赛赛..基于玉米叶脉筛板结构的PEMFC双极板流道设计及研究[D].吉林大学,2022:
  • 9刘旺玉,何芋钢,罗远强,黄光文.仿猪笼草结构的质子交换膜燃料电池流道设计[J].电源技术,2022,46(3):280-283. 被引量:3
  • 10乔运乾..基于树叶形态的PEMFC双极板结构设计与优化[D].武汉理工大学,2011:

二级参考文献32

  • 1陈振兴,郭树杰,胡科峰,曹磊,谷军.燃料电池双极板流场及电堆结构研究现状[J].电池工业,2020(5):264-268. 被引量:4
  • 2马小杰,方卫民.质子交换膜燃料电池双极板研究进展[J].材料导报,2006,20(1):26-30. 被引量:6
  • 3Springer A A,Zawodzinski T A,Gottesfeld S.Polymer electrolyte fuel cell model[J].J Electrochem Soc,1991,138(8):2334-2342. 被引量:1
  • 4Bernardi D M,Verbrugge M W.A mathematical model of the solid-polymer-electrolyte fuel cell[J].J Electrochem Soc,1992,139(9):2477-2491. 被引量:1
  • 5Gurau V,Liu H T,Kakac S.Two-dimensional model for proton exchange membrane fuel cells[J].AIChE J,1998,44:2410-2422. 被引量:1
  • 6Wang C Y.Fundamental models for fuel cell engineering[J].Chem Rev,2004,104:4727-4766. 被引量:1
  • 7Meng H,Wang C Y.Large-scale simulation of polymer electrolyte fuel cells by parallel computing[J].Chem Eng Sci,2004,59:3331-3343. 被引量:1
  • 8Cha S W,Hayre R O,Saito Y,et al.The scaling behavior of flow patterns:a model investigation[J].J Power Sources,2004,134:57-71. 被引量:1
  • 9Mazumder S,Cole J V.Rigorous 3-D mathematical modeling of PEM fuel cells Ⅰ:Model predictions without liquid water transport[J].J Electrochem Soc,2003,150(11):A1503 -A1509. 被引量:1
  • 10Wang Z H,Wang C Y,Chen K S.Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells[J].J Power Sources,2001,94:40-50. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部