期刊文献+

一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法

A Robust Least Squares Support Vector Machine GNSS-IR Soil Moisture Inversion Method
下载PDF
导出
摘要 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 Global navigation satellite system interferometric reflection is a new remote sensing technology that can use the delay phase values of multipath signal-to-noise ratio sequences to invert soil moisture values.The delay phase solution is usually obtained using a trust region algorithm,which relies to some extent on initial value settings.So this article first uses genetic algorithm to solve for the rough value of the delay phase,and then uses this value as the initial value of the trust region for iterative calculation,which improves the accuracy and stability of solving some satellite delay phases.In addition,for multipath signal-to-noise ratio sequences,which are susceptible to environmental factors and introduce gross errors,which can affect the inversion accuracy of the model,this paper adopts a robust least squares support vector machine as the inversion model.At the same time,taking into account the spatiotemporal scale advantage of multi-satellite fusion,the model is respectively inverted from single star to five star fusion,and compared with the least squares support vector machine model.The results show that the model has the most significant improvement in accuracy when integrating with Samsung,with a maximum MAE reduction of 15.6%and a maximum RMSE reduction of 12.0%.
作者 王式太 蒋威 杨可心 马岳 姜新伟 WANG Shitai;JIANG Wei;YANG Kexin;MA Yue;JIANG Xinwei(School of Surveying and Mapping Geographic Information,Guilin University of Technology,Guilin,Guangxi 541006,China;Key Laboratory of Spatial Information and Surveying and Mapping,Guilin,Guangxi 541006,China)
出处 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页 Remote Sensing Information
基金 广西空间信息与测绘重点实验室基金(19-050-11-27) 广西高校中青年教师科研基础能力提升项目(2022KY1163)。
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小二乘支持向量机 GNSS-IR soil moisture genetic algorithm multi satellite fusion robust least squares support vector machine
  • 相关文献

参考文献6

二级参考文献26

  • 1Martin-Neira, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[ J ]. IEEE Transactions on Geoscience and Remote Sensing,2001,39( 1 ) : 142 - 150. 被引量:1
  • 2Anderson K. Determination of water level and tides using in- terferometric observations of GPS signals [ J ]. Journal of At- mospheric Oceanic Technology ,2000,17 ( 8 ) : 1 118 - 1 127. 被引量:1
  • 3Dallas Masters, Penina Axelrad and Stephen Katzberg. Ini- tial results of land-reflected GPS bistatic radarmeasurements in SMEX02[ J]. Remote Sensing of Environment, 2004, 92 : 507 - 520. 被引量:1
  • 4Cardellach E, et al. Mediterranean balloon experiment:Ocean wind speed sensing from the stratosphere, using GPS reflections[J]. Remote Sensing of Environment, 2003,88 : 351 - 362. 被引量:1
  • 5Bilich A L, Axelrad P and Larson K M. Scientific utility of the Signal-to-Noise Ratio (SNR) reported by geodetic GPS receivers [ C ]. The 20th Int Tech Meet Satellite Div Inst Navigation GNSS Fort Worth. , Texas. 2007. 被引量:1
  • 6Larson K, et al. Using GPS multipath to measure soil moisture fluctuations : initial results [ J ]. GPS Solutions, 2008, 12(3) : 173 -177. 被引量:1
  • 7Scargle J D. Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data [J]. Astrophys J., 1982, 263:835-853. 被引量:1
  • 8刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960. 被引量:82
  • 9陈俊勇,张鹏,武军郦,张全德.关于在中国构建全球导航卫星国家级连续运行站系统的思考[J].测绘学报,2007,36(4):366-369. 被引量:95
  • 10严颂华,龚健雅,张训械,李冻秀.GNSS-R测量地表土壤湿度的地基实验[J].地球物理学报,2011,54(11):2735-2744. 被引量:59

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部