期刊文献+

Exosomes derived from BMSCs ameliorate cyclophosphamide-induced testosterone deficiency by enhancing the autophagy of Leydig cells via the AMPK-mTOR signaling pathway 被引量:1

原文传递
导出
摘要 Cyclophosphamide-induced testosterone deficiency (CPTD) during the treatment of cancers and autoimmune disorders severelyinfluences the quality of life of patients. Currently, several guidelines recommend patients suffering from CPTD receive testosteronereplacement therapy (TRT). However, TRT has many disadvantages underscoring the requirement for alternative, nontoxictreatment strategies. We previously reported bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exos) could alleviatecyclophosphamide (CP)-induced spermatogenesis dysfunction, highlighting their role in the treatment of male reproductive disorders.Therefore, we further investigated whether BMSCs-exos affect autophagy and testosterone synthesis in Leydig cells (LCs). Here,we examined the effects and probed the molecular mechanisms of BMSCs-exos on CPTD in vivo and in vitro by detecting theexpression levels of genes and proteins related to autophagy and testosterone synthesis. Furthermore, the testosterone concentrationin serum and cell-conditioned medium, and the photophosphorylation protein levels of adenosine monophosphate-activatedprotein kinase (AMPK) and mammalian target of rapamycin (mTOR) were measured. Our results suggest that BMSCs-exos couldbe absorbed by LCs through the blood–testis barrier in mice, promoting autophagy in LCs and improving the CP-induced low serumtestosterone levels. BMSCs-exos inhibited cell death in CP-exposed LCs, regulated the AMPK-mTOR signaling pathway to promoteautophagy in LCs, and then improved the low testosterone synthesis ability of CP-induced LCs. Moreover, the autophagy inhibitor,3-methyladenine (3-MA), significantly reversed the therapeutic effects of BMSCs-exos. These findings suggest that BMSCs-exospromote LC autophagy by regulating the AMPK-mTOR signaling pathway, thereby ameliorating CPTD. This study provides novelevidence for the clinical improvement of CPTD using BMSCs-exos.
出处 《Asian Journal of Andrology》 SCIE CAS CSCD 2023年第4期474-483,共10页 亚洲男性学杂志(英文版)
基金 supported by grants from the National Natural Science Foundation of China(No.81772257) the Third Affiliated Hospital of Southern Medical University President’s Fund(YM2021008).
  • 相关文献

参考文献3

二级参考文献2

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部