期刊文献+

基于Q-learning和自适应网络约束的空调节能控制方法研究

Research on air conditioning energy saving control method based on Q-learning and adaptive network constraints
下载PDF
导出
摘要 提出了一种基于Q-learning和自适应网络约束的空调节能控制方法,以解决传统积分微分控制(PID)下空调能耗过高的问题。首先,利用专家系统和Reward函数构建奖励矩阵,并将其元素对应的空调运行参数划分为数据集A和B。其次,初始化径向基函数(Radial Basis Function)神经网络模型,以数据集A为训练数据对建构网络进行训练,使用数据集B对网络约束模型进行验证,直到准确率达到90%以上。最后,将网络约束模型与强化学习的Q-learning策略相结合,实现空调运行的最优策略决策。实验结果表明,在满足用户舒适性的前提下,该算法相较于传统的空调控制逻辑,能够实现节能效果。 An energy-efficient control method for air conditioners based on adaptive network constraints and Q-learning is proposed to reduce the high energy consumption of air conditioners under traditional integral differential control.First,the reward matrix is constructed by using the expert system and the Reward function,and the air conditioner operating parameters corresponding to its elements are divided into data sets A and B.Next,the Radial Basis Function(RBF)neural network model is initialized,the constructed network is trained using dataset A as training data,and the network constraint model is validated using dataset B until the accuracy rate reaches more than 90%.Finally,the network constraint model is combined with the Q-learning algorithm to realize the optimal strategy selection for air conditioning energy saving.Experiments show that the algorithm is able to achieve energy saving effect compared to traditional air conditioning control logic without sacrificing user comfort.
作者 唐杰 林进华 TANG Jie;LIN Jinhua(Gree Electric Appliances,Inc.of Zhuhai Zhuhai 519070)
出处 《家电科技》 2024年第2期46-50,共5页 Journal of Appliance Science & Technology
关键词 专家系统 径向基神经网络 强化学习 舒适节能 Expert system Radial basis neural network Reinforcement learning Comfortable energy saving
  • 相关文献

参考文献6

二级参考文献40

  • 1杨百昌,肖锐,文耿,陈宇,洪平.变频压缩机启动问题分析与研究[J].电器,2013(S1):465-469. 被引量:6
  • 2赵瑞军,王先来,李维平.模糊控制技术在中央空调系统中的应用研究[J].山西建筑,2005,31(1):95-96. 被引量:9
  • 3HAYKIN S. Cognitive radio: brain-empowered wireless communica- tions[ J]. IEEE Joumal on Selected Areas in Communications, 2005,23(2) :201-220. 被引量:1
  • 4ZHAO Qing, SADLER B M. A survey of dynamic spectrum access [J]. IEEE Signal Processing Magazine,2007,24(3) :79-89. 被引量:1
  • 5ZHAO Qing, TONG Lung, SWAMI A, et aL Decentralized cognitive MAC for opportunistic spectrum access in Ad hoe networks : a POMDP framework[ J].IEEE Joumal on Selected Areas in Cemmunica- tions,2007,25(3) :589-600. 被引量:1
  • 6CHEN Yun-xia, ZHAO Qing, SWAMI A. Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors[ J]. IEEE Trans on Information Theory, 2008,54 (5) : 2053-2071. 被引量:1
  • 7AHMAD S, LIU Ming-yan, JAVIDI T, et al. Optimality of myopic sens- ing in muhichannel opportunistic access[ J]. IEEE Trans on Infor- mation Theory,2009,55(9) :4040-4050. 被引量:1
  • 8CHEN Yun-xia,ZHAO Qing,SWAMI A. Distributed spectrum sensing and access in cognitive radio networks with energy constraint [ J ]. IEEE Trans on Signal Processing,2009,57(2) :783-797. 被引量:1
  • 9WANG Bei-bei, Jl Zhu, LIU K, et al. Primary-prioritized Markov ap- proach for dynamic spectrum allocation [ J ]. IEEE Trans on Wire- less Communications,2009,8(4 ) : 1854-1865. 被引量:1
  • 10XU Yu-hua, WANG Jin-long,WU Qi-hui, et al. Opportunistic spec- trum access in unknown dynamic environment: a game-theoretic sto- chastic learning solution[ J ]. IEEE Trans on Wireless Communi- cations ,2012,11 (4) : 1380-1391. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部