摘要
为了建立系统的正交面齿轮传动啮合界线与曲率干涉界线理论,本文通过求解非线方程组获得了两类界线的数值解。证明了啮合界线在小轮齿面上是渐开线;其共轭线也是渐开线。发现干涉界线一般有2条,近齿面干涉界线存在于面齿轮内端附近,大致沿齿高走向。近齿面干涉界点存在平凡解,是干涉界线和啮合界线共轭线的交点,位于传动副瞬时相对转动轴上。基于近齿面干涉界线,建立了面齿轮无根切内径公式,通过数值迭代可以获得内径准确值;还导出了无根切内径估算公式,便于设计中应用。
In order to establish the theory of two kinds of limit line is set forth for the orthogonal face gear drive.By solving the nonlinear equations,the numerical solutions of the limit lines are obtained.It is proved that both the meshing limit line and its conjugate line are all involute.Generally,the interference limit line has two branches,and one branch near the gear exists approximately at its inner end,roughly along the tooth height and slightly aslant.The interference limit point has a trivial solution,and the related limit point is the intersecting point of the limit line and the conjugate line of meshing limit line.The trivial limit point is on the instantaneous axis of the rela-tive rotation of the gear pair.By means of the theory proposed,a method based numerical iteration to compute the exact inner radius is proposed for the face gear without undercutting.Meanwhile an approximate formula to estimate the non-undercutting inner radius is put forward for convenient design.
作者
赵亚平
娄海青
ZHAO Yaping;LOU Haiqing(School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110004,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第4期764-770,共7页
Journal of Harbin Engineering University
基金
国家自然科学基金项目(52075083)
武汉科技大学冶金装备及其控制教育部重点实验室开放基金项目(MECOF2022B04,MECOF2023B01).
关键词
面齿轮
曲率干涉
啮合界线
渐开线
直齿轮
根切
非线性
内径
face gear
curvature interference
meshing boundary line
involute
spur gear
undercutting
nonlin-