期刊文献+

高光谱成像技术在农产品品质检测中的应用及局限性分析

Application and Limitation Analysis of Hyperspectral Imaging Technology in Quality Detection of Agricultural Products
下载PDF
导出
摘要 近年来,农产品无损检测技术得到快速发展。高光谱成像技术将光谱信息与图像信息相结合,弥补了光谱信息的不足,相较传统检测技术具有精度高、无污染、无破坏性等特点,因此在农产品无损检测领域具有良好的应用前景。基于此分析了高光谱成像技术在无损检测中的应用情况,包括农产品分级分类、损伤检测、表面农残检测、营养成分快速检测等,并对高光谱成像技术在农产品领域的发展趋势和局限性进行分析,以期为农产品无损检测提供参考。 In recent years,non-destructive testing technology for agricultural products has developed rapidly.Hyperspectral imaging technology combines spectral information with image information,making up for the shortcomings of spectral information.Compared to traditional detection technologies,it has characteristics such as high accuracy,no pollution,and no destruction.Therefore,it has good application prospects in the field of non-destructive testing of agricultural products.Based on this,the process of hyperspectral image information processing was analyzed,and the application of hyperspectral imaging technology in non-destructive testing was introduced,including agricultural product classification,damage detection,maturity analysis,quality index detection,etc.The development trend and limitations of hyperspectral imaging technology in the field of agricultural products were analyzed.
作者 孙大明 叶彤 赵伟 张鑫 李志博 聂美玲 邢璐露 刘兴博 杨金砖 李昕怿 张瑾 吴世凯 SUN Daming;YE Tong;ZHAO Wei;ZHANG Xin;LI Zhibo;NIE Meiling;XING Lulu;LIU Xingbo;YANG Jinzhuan;LI Xinyi;ZHANG Jin;WU Shikai(Heilongjiang Academy of Agricultural Machinery Sciences,Harbin 150081,China;Jiefang Township Yi’an County Rural Economic Development Service Center,Yi’an 161533,Chian;Sanxing Town Government,Yi’an County,Yi’an 161533,China)
出处 《农机使用与维修》 2024年第5期126-128,共3页 Agricultural Machinery Using & Maintenance
关键词 高光谱成像 无损检测 农产品 品质 hyperspectral imaging non-destructive testing agricultural products quality
  • 相关文献

参考文献4

二级参考文献61

  • 1齐龙,马旭,廖醒龙.基于多光谱视觉的稻瘟病抗病性分级检测技术[J].吉林大学学报(工学版),2009,39(S1):356-359. 被引量:5
  • 2洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:111
  • 3Kobayashi T, Kanda E, Kitada K, et al. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners[J]. Phytopathology, 2001, 91(3): 316-323. 被引量:1
  • 4Kobayashi T, Kanda E, Naito S, et al. Ratio office reflectance for estimating leaf blast severity with a multispeclral radiometer[J]. J Gerl Plant Pathol, 2003, 69( !): 17-22. 被引量:1
  • 5Douglas Barbin, Gamal Elmasry, Sun Dawei, et al. Near-infrared hyper spectral imaging for grading and classification of pork[J]. Meat Science, 2012, 90(1): 259- 268. 被引量:1
  • 6Qin J w, Burks T F, Ritenour M A, et al. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence[J]. Journal of Food Engineering, 2009, 93(2): 183-191. 被引量:1
  • 7Juan Xing, Cedric Bravo, Pal T Jancsok, et al. Detecting bruises on 'Golden Delicious' apples using hyper spectral imaging with multiple wavebands[J]. Biosystems Engineering, 2005, 90(1): 27-36. 被引量:1
  • 8Moshou D, Bravo C, West J, et al. Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks[J]. Computers and Electronics in Agriculture, 2004, 44(3): 173 - 188. 被引量:1
  • 9Moshou D, Bravo C, Oberti R, et al. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps[J]. Real-Time Imaging, 2005, 11(2): 75-83. 被引量:1
  • 10Lee W S, Ehsani R, Albrigo L G. Citrus greening disease (Huanglongbing) detection using aerial hyperspectral imaging[C]// The Proceedings of the 9^th International Conference on Precision Agriculture, 2008, Denver, CO. 被引量:1

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部