期刊文献+

A Novel Foreign Object Detection Method in Transmission Lines Based on Improved YOLOv8n

下载PDF
导出
摘要 The rapid pace of urban development has resulted in the widespread presence of construction equipment andincreasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safeoperation of the power grid.Machine vision technology, particularly object recognition technology, has beenwidelyemployed to identify foreign objects in transmission line images. Despite its wide application, the technique faceslimitations due to the complex environmental background and other auxiliary factors. To address these challenges,this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replacedwith a spatial-depth convolution (SPD-Conv) module, aiming to improve the algorithm’s efficacy in recognizinglow-resolution and small-size objects. The algorithm’s feature extraction network is improved by using a LargeSelective Kernel (LSK) attention mechanism, which enhances the ability to extract relevant features. Additionally,the SIoU Loss function is used instead of the Complete Intersection over Union (CIoU) Loss to facilitate fasterconvergence of the algorithm. Through experimental verification, the improved YOLOv8n model achieves adetection accuracy of 88.8% on the test set. The recognition accuracy of cranes is improved by 2.9%, which isa significant enhancement compared to the unimproved algorithm. This improvement effectively enhances theaccuracy of recognizing foreign objects on transmission lines and proves the effectiveness of the new algorithm.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第4期1263-1279,共17页 计算机、材料和连续体(英文)
基金 the Natural Science Foundation of Shandong Province(ZR2021QE289) State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22201).
  • 相关文献

参考文献5

二级参考文献25

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部