期刊文献+

An improved LSE-EKF optimisation algorithm for UAV UWB positioning in complex indoor environments

原文传递
导出
摘要 With the increasing application of UAVs,UAV positioning technology for indoor complex environment has become a hot research issue in the industry.The traditional UWB positioning technology is affected by problems such as multipath effect and non-line-of-sight propagation,and its application in complex indoor environments has problemssuch as poor positioning accuracy and strong noise interference.We propose an improved LSE-EKF optimisation algorithm for UWB positioning in indoor complex environments,which optimises the initial measurement data through a BP neural network correction model,then optimises the coordinate error using least squares estimation to find the best pre-located coordinates,finally eliminates the interference noise in the pre-located coordinate signal through an EKF algorithm.It has been verified by experiments that the evaluation index can be improved by more than 9%compared with EKF algorithm data,especially under non-line-of-sight(NLOS)conditions,which enhances the possibility of industrial application of indoor UAV.
出处 《Journal of Control and Decision》 EI 2023年第4期547-559,共13页 控制与决策学报(英文)
基金 supported by Beijing University of Chemical Technology[0103/21570118000].
  • 相关文献

参考文献1

二级参考文献8

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部