期刊文献+

Critical Review on Improved Electrochemical Impedance Spectroscopy-cuckoo Search-Elman Neural Network Modeling Methods for Whole-life-cycle Health State Estimation of Lithium-ion Battery Energy Storage Systems

原文传递
导出
摘要 Efficient and accurate health state estimation is crucial for lithium-ion battery(LIB)performance monitoring and economic evaluation.Effectively estimating the health state of LIBs online is the key but is also the most difficult task for energy storage systems.With high adaptability and applicability advantages,battery health state estimation based on data-driven techniques has attracted extensive attention from researchers around the world.Artificial neural network(ANN)-based methods are often used for state estimations of LIBs.As one of the ANN methods,the Elman neural network(ENN)model has been improved to estimate the battery state more efficiently and accurately.In this paper,an improved ENN estimation method based on electrochemical impedance spectroscopy(EIS)and cuckoo search(CS)is established as the EIS-CS-ENN model to estimate the health state of LIBs.Also,the paper conducts a critical review of various ANN models against the EIS-CS-ENN model.This demonstrates that the EIS-CS-ENN model outperforms other models.The review also proves that,under the same conditions,selecting appropriate health indicators(HIs)according to the mathematical modeling ability and state requirements are the keys in estimating the health state efficiently.In the calculation process,several evaluation indicators are adopted to analyze and compare the modeling accuracy with other existing methods.Through the analysis of the evaluation results and the selection of HIs,conclusions and suggestions are put forward.Also,the robustness of the EIS-CS-ENN model for the health state estimation of LIBs is verified.
出处 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期75-100,共26页 现代电力系统保护与控制(英文)
基金 supported by the National Natural Science Foundation of China(No.62173281 and No.61801407) the Sichuan Science and Technology Pro-gram(No.2019YFG0427 and No.2023YFG0108) the China Scholarship Council(No.201908515099) the Fund of Robot Technology used for the Special Environment Key Laboratory of Sichuan Province(No.18kftk03).
  • 相关文献

参考文献6

二级参考文献48

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部