摘要
Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity of a single semiconductor device,using semi-conductor-based SSCBs at high voltage is challenging.This study presents the details of a 1.5 kV,63 A medi-um-voltage SSCB,composed primarily of a solid-state switch based on three cascaded normally-on silicon car-bide(SiC)junction field-effect transistors(JFETs)and a low-cost programmable gate drive circuit.Dynamic and static voltage sharing among the cascaded SiC JFETs of the SSCB during fault isolation is realized using the pro-posed gate drive circuit.The selection conditions for the key parameters of the SSCB gate driver are also analyzed.Additionally,an improved pulse-width modulation cur-rent-limiting protection solution is proposed to identify the permanent overcurrent and transient inrush current associated with capacitive load startup in a DC distribu-tion network.Using the developed SSCB prototype and the fault test system,experimental results are obtained to validate the fault response performance of the SSCB.Index Terms—Solid-state circuit breaker,DC distribu-tion network,SiC JFET,voltage balancing,inrush current.
基金
supported in part by Hunan Provincial Natural Science Foundation of China(No.2021JJ40172).