期刊文献+

基于双尺度时间特征的步态识别方法

Gait recognition method based on dual-level temporal features
下载PDF
导出
摘要 当前,多数步态识别方法关注于步态序列单一时间尺度建模,忽略了不同时间尺度的信息交互。基于此,提出了一种双尺度时间特征表示网络。该方法聚合两个时间尺度特征来获取步态的运动表示,并将两个时间尺度上特征进行融合,实现信息交互。通过多视角识别实验验证,该方法在数据集CASIA-B上的性能超越了主流的步态识别方法,在NM、BG和CL条件下Rank-1准确率分别达到97.8%、93.1%以及80.6%。 At present,most gait recognition methods focus on the modeling of a single time scale of gait sequences,ignoring the information interaction of different time scales.Based on this,a dual-scale temporal feature representation network is proposed.This method aggregates two time level features to obtain the motion representation of gait,and fuses the features on the two time scales to achieve information interaction.Through experimental verification,the performance of this method on the data set CASIA-B sur-passes the mainstream gait recognition method,and the Rank-1 accuracy rate reaches 97.8%,93.1%and 80.6%under NM,BG and CL conditions,respectively.
作者 魏永超 徐未其 朱泓超 朱姿翰 刘伟杰 Wei Yongchao;Xu Weiqi;Zhu Hongchao;Zhu Zihan;Liu Weijie(Scientific Research Office,China Civil Aviation Flight Academy,Deyang 618307,China;School of Civil Aviation Safety Engineering,China Civil Aviation Flight Academy,Deyang 618307,China;School of Avionics and Electrical Engineering,China Civil Aviation Flight Academy,Deyang 618307,China)
出处 《现代计算机》 2024年第6期8-13,55,共7页 Modern Computer
基金 西藏科技厅重点研发计划(XZ202101ZY0017G) 四川省科技厅重点研发项目(2022YFG0356) 中国民用航空飞行学院科研基金(J2020-040、CJ2020-01)。
关键词 步态识别 时间尺度 空间特征 多视角识别 gait recognition time level spatial features multi-view recognition
  • 相关文献

参考文献2

二级参考文献14

  • 1Kale A, Sundaresan A, Rajagopalan A N, et al. Identification of Humans Using Gait [J]. IEEE Transactions on Image Processing, 2004, 13 (9): 1163-1173. 被引量:1
  • 2Kuchi P, Panchanathan S. Intrinsic Mode Functions for Gait Recognition [A]. Proceedings of the 2004 International Symposium on Circuits and Systems [C] : Vancouver, Canada, 2004,2 (2) : 117-120. 被引量:1
  • 3Lee Chan-su, Elgammal A. Gait Style and Gait Content Bilinear Models for Gait Recognition Using Gait Re-sampling [A]. Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition [C]. Lake Tahoe, USA, 2004 : 46-50. 被引量:1
  • 4Nikolaos V B, Konstantinos N P,Dimitrios H. Gait Recognition Using Linear Time Normalization[J]. Pattern Recognition, 2006,39 (5) : 969-979. 被引量:1
  • 5Luciano S, Constantin R, Max S D, et al. Alternative Approach to Modal Gait Analysis Through the Karhunen-Loeve Decomposition: An Application in the Sagittal Plane [J]. Journal of Biomechanics, 2006,39 ( 15 ) : 2898-2906. 被引量:1
  • 6Wang L, Tan T, Hu Wet al. Automatic Gait Recognition Hased on Statistical Shape Analysis [J]. IEEE Transactions on Image Processing,2003,12(9):1120-1131. 被引量:1
  • 7Wang L, Ning H Z, Tan Tie-niu, et al. Fusion of Static and Dynamic Body Biometrics for Gait Recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004. 14 (2): 149-158. 被引量:1
  • 8Nixon M S, Tan T N, Chellapa R. Human Identification Based on Gait []. Kluwer Academic Publishers, 2005. 被引量:1
  • 9Tekalpam. Digital video processing [M]. Prentice Hall. 1995. 被引量:1
  • 10Hartaohu I, Harwood D, Davis L. Real-time surveillance of people and their activities [J]. IEEE Trans Pattern Analysis and Ma2 chine Intelligence, 2000,22(8) :809-830. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部