期刊文献+

基于卡尔曼滤波多目标追踪的家用精子活力检测算法研究与验证

Research and validation of household sperm motility detection algorithm based on Kalman filter multi-target tracking
下载PDF
导出
摘要 针对传统精液分析方法存在的主观性差异、操作繁琐和不适合便携式家用检测等问题,研究并验证了一种基于卡尔曼滤波多目标追踪技术的精子活力检测系统算法.首先,通过叠加平均法,获取静态精子数量,根据三帧差法获取运动精子质心位置;然后,使用卡尔曼多目标追踪方法绘制运动目标轨迹,再根据筛选条件获取运动精子数量;最后,综合静态与运动精子数量评价精子活力.通过对实际采集的7组样本图像进行分析,研究结果表明:该系统所检测精子的活力值与人工检测的活力值相差较小,基本满足了家用精子活力检测的需求. In order to solve the problems of subjective differences,cumbersome operation and discommodious portable household detection of traditional semen analysis methods,a sperm motility detection system algorithm was studied and verified based on Kalman filter multi-target tracking technology in this paper.Firstly,the number of static sperm was obtained through the superposition average method.The centroid position of the moving sperm was obtained according to the three frame difference method.Secondly,the Kalman multi-target tracking method was used to draw the trajectory of the moving target,obtaining the number of moving sperm according to the filtering conditions.Finally,the number of static and moving sperm was combined to yield sperm motility.Through the analysis of the actual seven groups of sample images,the results showed that the sperm motility value detected by the system was less different from that detected manually,which basically satisfied the requirement of household sperm motility detection.
作者 朱燕飞 王勇伟 李传江 张崇明 ZHU Yanfei;WANG Yongwei;LI Chuanjiang;ZHANG Chongming(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
出处 《上海师范大学学报(自然科学版中英文)》 2024年第2期283-290,共8页 Journal of Shanghai Normal University(Natural Sciences)
关键词 精子活力检测 卡尔曼滤波 多目标追踪 sperm motility detection Kalman filter multi-target tracking
  • 相关文献

参考文献8

  • 1卢文红,蔡靖,孙莹璞,孙海翔,邓成艳,刘平,周灿权,冯云,郝桂敏,全松,沈浣,师娟子,滕晓明,王晓红,王秀霞,伍琼芳,曾勇,张松英,钟影,黄学锋,黄国宁.精液分析质量控制方法专家共识[J].生殖医学杂志,2023,32(1):1-8. 被引量:5
  • 2朱宽峰.精液质量分析系统的应用技巧[J].中国畜牧业,2022(11):120-122. 被引量:1
  • 3汪成,范舒舒,张思,黄文波,侯志伟.男科实验室计算机辅助精液分析系统的应用及质量控制[J].中国医学创新,2020,17(13):143-148. 被引量:6
  • 4刘广宇..基于OpenCV的精子运动轨迹检测系统的设计与实现[D].山东大学,2015:
  • 5李丹..基于计算机视觉的精子活性检测技术研究[D].上海师范大学,2020:
  • 6王硕..基于轨迹椭圆拟合的CNN精子活力评估模型[D].天津大学,2020:
  • 7钱义飞..基于计算机视觉的多目标检测与追踪[D].安徽医科大学,2022:
  • 8汪涛..基于计算机辅助的精子活力分析研究[D].安徽医科大学,2023:

二级参考文献21

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部