期刊文献+

基于补偿注意力机制的Siamese网络跟踪算法

Siamese Network Tracking Algorithm Based on Compensated Attention Mechanism
下载PDF
导出
摘要 为了应对视觉目标跟踪中常见的目标尺寸变化、运动模糊、目标被遮挡、目标受相似物干扰等问题,提出一种基于补偿注意力机制的Siamese网络跟踪算法CDAM-Siam。首先采用Res Net-50网络构建Siamese的骨干网络以进行不同层次的特征提取,加深网络同时充分利用不同层所提取的特征;其次在骨干网络中融入具有补偿机制的双重注意力网络CDAM,强化特征图中的有效特征并减弱一些边缘特征,以提高CDAM-Siam算法面对复杂场景时的鲁棒性;最后构建特征融合网络并将其添加到主干网络中,对来自不同层次的特征图进行有效融合以获得高分辨率和信息丰富的特征图,最终实现准确的目标跟踪。在GOT-10K和You Tube-BB数据集上对CDAM-Siam算法进行训练后,在OTB100数据集上进行检测,结果表明,CDAM-Siam的跟踪成功率和精度分别达到68.3%和89.5%,在面临跟踪任务中的常见挑战时其仍能保持较好的跟踪效果,跟踪速度可达56帧/s,满足实时跟踪需求;在VOT2018数据集中的测试结果显示,该算法的准确率、鲁棒性和平均重叠率分别可达53.8%、39.4%和26.5%。 To tackle prevalent challenges in visual object tracking,including variations in target size,motion blur,occlusion,and interference from similar objects,the Compensatory Dual Attention Mechanism(CDAM)-Siam was introduced.This Siamese network tracking algorithm leverages a compensatory attention mechanism for enhanced performance.First,the ResNet-50 network is used to construct the backbone network of the Siamese network for feature extraction at different levels,deepening the network while fully utilizing the features extracted from different layers.The CDAM-Siam algorithm integrates a compensatory dual attention network,enhancing key features and reducing-edge details to improve robustness in complex environments.Finally,a feature fusion network is constructed and added to the backbone network to effectively fuse feature maps from different levels to obtain high-resolution and informative feature maps,ultimately achieving accurate target tracking.After training the CDAM-Siam algorithm on the GOT-10K and YouTube-BB datasets,the detection was performed on the OTB100 dataset.The results showed that the tracking success rate and accuracy of CDAM-Siam were 68.3%and 89.5%,respectively.Despite challenges,the algorithm maintains strong performance,tracking at up to 56 frames per second for real-time requirements.On the VOT2018 dataset,it achieves 53.8%accuracy,39.4%robustness,and a 26.5%Expected Average Overlap(EAO).
作者 安玉 葛海波 何文昊 马赛 程梦洋 AN Yu;GE Haibo;HE Wenhao;MA Sai;CHENG Mengyang(School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,Shaanxi,China)
出处 《计算机工程》 CAS CSCD 北大核心 2024年第4期187-196,共10页 Computer Engineering
基金 陕西省自然科学基金(2011JM8038) 陕西省重点产业创新链(群)项目(S2019-YF-ZDCXL-0098)。
关键词 目标跟踪 Siamese网络 Res Net-50网络 注意力机制 特征融合 target tracking Siamese network ResNet-50 network attention mechanism feature fusion
  • 相关文献

参考文献4

二级参考文献231

  • 1马素刚,赵祥模,侯志强,王忠民,孙韩林.一种基于ResNet网络特征的视觉目标跟踪算法[J].北京邮电大学学报,2020(2):129-134. 被引量:9
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237. 被引量:1
  • 4Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. 被引量:1
  • 5Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29. 被引量:1
  • 6Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19. 被引量:1
  • 7Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418. 被引量:1
  • 8Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891. 被引量:1
  • 9Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325. 被引量:1
  • 10Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127. 被引量:1

共引文献493

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部