期刊文献+

基于分组查询树的RFID标签识别算法

RFID Tags Recognition Algorithm Based on Grouping Query Tree
下载PDF
导出
摘要 为了解决多标签碰撞问题,设计一种新型RFID防碰撞算法。通过在QT防碰撞算法基础研究,针对大量移动标签场景提出了一种分组查询树防碰撞(GQT)算法。新算法通过将标签ID码进行分组的方式进行重新编码,按连续三比特位一组形式进行组合,同组之间前两位做异或或者同或运算,如果异或结果得到的是第三位的值,将这组编号为0,如果同或运算结果为第三位的值,将这组编号为1,交叉进行编号,将生成的编号进行重新编码形成新的二进制比特位,最后采用查询树算法进行识别。理论分析表明GQT算法能消除空闲时隙,仿真结果表明,与QT算法和AHT算法作比较,GQT算法能减少碰撞时隙数,并且在大量标签数的情况下,算法识别效率能保持在0.76左右。可见GQT算法在物流运输、贮存、管理等场景具有良好的应用价值。 In order to solve the multi-tag collision problem,a new RFID anti-collision algorithm is designed.Based on the QT anti-collision algorithm,a Group-based query tree anti-collision(GQT)algorithm is proposed for a large number of mobile tag scenarios.The new algorithm re-encodes the tag ID code by double-grouping,combining as a group of three consecutive bits.The first two bits in the same group are XORed.If the result of the EOR operation is the third digit value,set this group number to 1.If the result of the XOR operation is the third digit value,set this group number to 1.And crossing the number,re-encode the generated number to form a new binary bit,and finally use query tree algorithm for identification.Theoretical analysis shows that the GQT algorithm can eliminate idle time slots,and the simulation results show that,compared with the QT algorithm and the AHT algo-rithm,the GQT algorithm can reduce the number of collision slots,and in the case of a large number of tags,the algorithm identification efficiency can be maintained at about 0.76.The GQT algorithm has good application value in logistics transportation,storage,management and other scenarios.
作者 周伟辉 万心悦 蒋年德 ZHOU Weihui;WAN Xinyue;JIANG Niande(Gandong College,Fuzhou 344000;College of Information Engineering,East China Institute of Technology,Nangchang 330013)
出处 《计算机与数字工程》 2024年第2期353-358,455,共7页 Computer & Digital Engineering
基金 江西省教育厅科技项目(编号:191612)资助。
关键词 RFID 多标签碰撞 防碰撞算法 查询树 分组编码 RFID multi-tag collision anti-collision algorithm query tree grouping encode
  • 相关文献

参考文献17

二级参考文献146

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部