期刊文献+

同步挤压小波变换在矿山微震监测系统中的应用

Synchrosqueezed wavelet transform application in mine microseismic monitoring system
下载PDF
导出
摘要 微震监测技术是一种保证矿山安全、高效、可持续发展的重要地压监测手段。矿山传感器获取的微震数据容易受到宽频带非平稳噪声的影响,导致微震监测缺乏可用的高质量数据。本文介绍了一种新的频谱分析方法——同步挤压小波变换,它提供了一种将数据同时分解到时域和频域的方法,且比小波变换等方法的时频分辨率更高,可以在时频谱上更为清晰地展示微震信号。同时,本文还比较了Morlet小波基和Bump小波基对微震波形的影响程度,并通过现场微震监测波形验证了Morlet小波基的相对可靠性。采用基于噪声水平的硬阈值滤波方法对其进行分别处理,结果表明,基于Morlet小波基的同步挤压小波变换在从原始数据中提取微震信号方面具有更大的实用价值,能够有效地提高信号的信噪比。 Microseismic monitoring technology is an important ground pressure monitoring method to ensure the safety,efficiency,and sustainable development of mines.The data obtained by microseismic sensors are easily affected by broadband non-stationary noises,resulting in a lack of available high-SNR data for microseismic analysis.This paper introduces a new spectral analysis method-synchrosqueezed wavelet transform,which provides a method for decomposing data into both time and frequency domains and has higher time-frequency resolution than wavelet transform.It can more clearly display the microseismic waveform in the time-frequency spectrum.Meanwhile,this paper compares the impact of the Morlet wavelet basis and Bump wavelet basis on microseismic waveforms and verified the relative reliability of the Morlet wavelet basis through on-site microseismic monitoring waveforms.The hard threshold filtering method based on noise level is used here to verify that the synchrosqueezed wavelet transform based on the Morlet wavelet basis has great practical value in extracting microseismic signals from raw data,and can effectively improve the SNR of the signal.
作者 石雅倩 张达 冀虎 陶志达 SHI Yaqian;ZHANG Da;JI Hu;TAO Zhida(BGRIMM Technology Group,Beijing 102628,China;National Center for International Joint Research on Green Metal Mining,Beijing 102628,China;China-South Africa Joint Research Center for Mineral Resources Development,Beijing 102628,China;China-South Africa BRI Joint Laboratory for Sustainable Development and Utilization of Mineral Resources,Beijing 102628,China;Beijing Key Laboratory of Nonferrous Intelligent Mining Technology,Beijing 102628,China;China Coal Processing and Utilization Association,Beijing 100013,China)
出处 《有色金属(矿山部分)》 2024年第3期95-100,共6页 NONFERROUS METALS(Mining Section)
基金 国家重点研发计划青年科学家项目(2021YFC2900600)。
关键词 微震监测 同步挤压小波变换 小波变换 滤波 MORLET小波 Bump小波 microseismic monitoring synchrosqueezed wavelet transform wavelet transform filtering morlet wavelet bump wavelet
  • 相关文献

参考文献5

二级参考文献41

  • 1李铁,蔡美峰,蔡明.采矿诱发地震分类的探讨[J].岩石力学与工程学报,2006,25(z2):3679-3686. 被引量:25
  • 2李庶林,尹贤刚,郑文达,Cezar Trifu.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053. 被引量:194
  • 3唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042. 被引量:110
  • 4孙继平.煤矿安全监控系统[M].北京:煤炭工业出版社,2006. 被引量:5
  • 5[3]Thom R.Stabilite Structurelle Morphogenese[M].[s.l.]:Benjumin Reading Mass,1972. 被引量:1
  • 6孙继平.煤矿监控系统手册[K].北京:煤炭工业出版社,2007. 被引量:2
  • 7ALVANITOPOULOS P F,PAPAVASILEIOU M,ANDREADIS I,et al.Seismic intensity feature construction based on the Hilbert-Huang transform[J].IEEE Transactions on Instrumentation and Measurement,2012,61(2):326-337. 被引量:1
  • 8GACI S.The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismictraces[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4558-4563. 被引量:1
  • 9SINHA S,POUTH P S,ANNO P D,et al.Spectral decomposition of seismic data with continuous-wavelet transforms[J].Geophysics,2005,70(6):19-25. 被引量:1
  • 10BEENAMOL M,PRABAVATHY S,MOHANALIN J.Wavelet based seismic signal de-noising using Shannon and Tsallis entropy[J].Computers & Mathematics with Applications,2012,64(11):3580-3593. 被引量:1

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部