期刊文献+

求解电动汽车车辆路径问题的双种群协同进化算法 被引量:1

Dual-population co-evolutionary algorithm for solving electric vehicle route problems
下载PDF
导出
摘要 绿色物流领域新兴的电动汽车车辆路径问题,由于需要对车辆路径和充电决策同时优化,搜索空间急剧增大,且需要同时满足容量和电量双重约束,现有方法难以快速找到质量较优的可行解。为此,提出一种基于双种群的协同进化算法,通过忽略电量约束构造简单带容量约束的车辆路径问题,辅助原始复杂问题的快速求解。为实现其间信息交互,设计一种基于改进距离邻接矩阵的解序列特征表示方法,旨在同时获取客户访问顺序和车辆指派信息;利用降噪自编码器构建2个问题解之间转换关系,以实现问题域间知识迁移。将该算法与目前常用的3种启发式算法和2种进化算法在不同规模测试集上进行对比,试验结果表明所提算法具有更快收敛速度且所获解集具有更好收敛性。 The emerging field of green logistics presents a challenge in the form of electric vehicle routing.This issue requires simultaneous optimization of routing and charging decisions,significantly expanding the search space.Moreover,solutions must comply with capacity and power constraints,making it difficult to quickly find feasible solutions using existing methods.To address these challenges,we propose a dual population-based co-evolutionary algorithm.This approach involves constructing a simpler problem to expedite the solution process for the original,more complicated problem.To facilitate information exchange between these two heterogeneous problems,we designed a solution representation method.This method,which is based on an improved distance adjacency matrix,allows to obtain information on customer visits and vehicle assignments.Subsequently,we employed a commonly used denoising autoencoder to establish the transformation relationship between solutions from these two problems.This step enables knowledge transfer between the two problem domains.Our proposed algorithm was tested against three heuristic methods and two evolutionary algorithms on test sets of different sizes.The experimental results show that the proposed algorithm not only converges faster but also yields solutions with superior convergence.
作者 王朝 秦芳 刘蓉蓉 江浩 WANG Chao;QIN Fang;LIU Rongrong;JIANG Hao(School of Artificial Intelligence,Anhui University,Hefei 230601,China)
出处 《智能系统学报》 CSCD 北大核心 2024年第2期438-445,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(62106002,62372001)。
关键词 绿色物流 电动汽车车辆路径问题 电量约束 双种群 进化算法 距离邻接矩阵 降噪自编码器 知识迁移 green logistics electric vehicle routing problem electricity constraint two-population evolutionary algorithm distance adjacency matrix denoising autoencoder knowledge transfer
  • 相关文献

参考文献7

二级参考文献53

  • 1赵燕伟,彭典军,张景玲,吴斌.有能力约束车辆路径问题的量子进化算法[J].系统工程理论与实践,2009,29(2):159-166. 被引量:41
  • 2张潜,高立群,刘雪梅,胡祥培.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):773-777. 被引量:44
  • 3钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,26(6):88-94. 被引量:48
  • 4NAGY G,SALSHI S.Location-routing:issues,models and methods[J].European Journal of Operational Research,2007,177:649-672. 被引量:1
  • 5MIN H,JAYARAMAN V,SRIVASTAVA R.Combined location-routing problem:a synthesis and future research directions[J].European Journal of Operational Research,1998,108:1-15. 被引量:1
  • 6TUZUN D,LAURA I.A two-phase tabu search approach to the location routing problem[J].European Journal of Operational Research,1999,116:87-99. 被引量:1
  • 7LIU S C,LEE S B.A two-phase heuristic method for the muti-facility location routing problem taking inventory control decisions into consideration[J].The International Journal of Advanced Manufacturing Technology,2003,22:941-950. 被引量:1
  • 8WU Taihis,LOW Chinyao,BAI Jiunnwei.Heuristic solution to multi-facility location-routing problems[J].Computers & Operations Research,2002,29:1393-1415. 被引量:1
  • 9KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Piscataway,USA,1995:1942-1948. 被引量:1
  • 10KENNEDY J,EBERHART R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of the World Multiconference on Systemics,Cybernetics,and Informatics.Piscataway,USA,1997:4104-4109. 被引量:1

共引文献49

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部