摘要
为了定量研究供水网络中总表漏水程度和分表读数虚高程度,根据水量平衡分析法的原理,结合大数据分析技术,建立了一元线性回归方程,回归常数代表总表漏水量程度,回归系数代表分表读数虚高程度。通过针对2021年某高校供水管网的实证研究表明,总表日均漏水量为15.5958吨,分表读数虚高率为1.07%。该方法对供水管网漏损率的精准评估等问题的解决提供了新的思路和方法。
In order to quantitatively study the degree of leakage of the total meter and the degree of inflated sub-meter readings in the water supply network,a one-dimensional linear regression equation was established based on the principle of water balance analysis method and combined with big data analysis techniques.In this equation,the regression constant represents the degree of leakage of the total meter and the regression coefficient represents the degree of inflated sub-meter readings.An empirical study for a university water supply pipe network in 2021 showed that the average daily leakage of the total meter was 15.5958 tons,and the falsely high sub-meter reading rate was 1.07%.This method provides new ideas and methods for solving problems such as accurate assessment of water supply network leakage rate.
作者
韩义秀
HAN Yixiu(Zhejiang Industry&Trade Vocational College,Wenzhou 325003,China)
出处
《浙江工贸职业技术学院学报》
2024年第1期70-73,84,共5页
Journal of Zhejiang Industry & Trade Vocational College
基金
浙江省高职教育“十四五”教学改革项目“基于高职数学CMP-CDIO教学模式的应用型数字化案例开发”(jg20230258)。
关键词
供水网络
水量平衡分析法
一元线性回归模型
漏水量
虚高
water supply network
water balance analysis method
one-dimensional linear regression model
water leakage
false high