期刊文献+

推荐系统冷启动问题解决方法研究综述

Survey on Solving Cold Start Problem in Recommendation Systems
下载PDF
导出
摘要 推荐系统在处理数据超载、提供个性化咨询服务、帮助客户投资决策等领域提供了重要功能。但推荐系统中存在的冷启动问题一直亟需解决和优化。基于此,对解决冷启动问题的传统方法和前沿方法进行分类,将近几年的研究进展和优秀的方法进行阐述。首先,归纳了冷启动问题的传统三大解决方案:基于内容过滤的推荐、基于协同过滤的推荐和混合推荐。其次,归纳了目前较为前沿的解决冷启动的推荐算法,并依据其解决冷启动问题的策略点将其分类为数据驱动的策略和方法驱动的策略,再将方法驱动的策略分为基于元学习的算法、基于上下文信息和会话策略的算法、基于随机游走的算法、基于异质图信息和属性图的算法和基于对抗性机制的算法,其中根据处理冷启动问题的种类将算法分为解决新用户和新项目两类。再根据推荐领域的特殊性,将多媒体信息领域推荐和在线电商平台领域推荐的冷启动问题进行阐述。最后,总结并提出了未来解决冷启动问题可能的研究方向。 Recommender systems provide important functions in areas such as dealing with data overload,providing personalized consulting services,and assisting clients in investment decisions.However,the cold start problem in recommender systems has always been in urgent need of solution and optimization.Based on this,this paper classifies the traditional methods and cutting-edge methods to solve the cold start problem,and expounds the research progress and excellent methods in recent years.Firstly,three traditional solutions to the cold start problem are summarized:recommendation based on content filtering,recommendation based on collaborative filtering,and hybrid recommendation.Secondly,the current cutting-edge recommendation algorithms to solve the cold start problem are summarized,and they are classified into the data-driven strategy and the method-driven strategy.The method-driven strategy is divided into algorithms based on meta-learning,algorithms based on context information and session strategy,algorithms based on random walk,algorithms based on heterogeneous graph information and attribute graph,and algorithms based on adversarial mechanism.According to the type of cold start problem,the algorithms are divided into two categories:new users and new items.Then,according to the particularity of the recommendation field,the cold start problem of the recommendation in the multimedia information field and the online e-commerce platform field is expounded.Finally,the possible research directions to solve the cold start problem in the future are summarized.
作者 毛骞 谢维成 乔逸天 黄小龙 董刚 MAO Qian;XIE Weicheng;QIAO Yitian;HUANG Xiaolong;DONG Gang(School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 610039,China)
出处 《计算机科学与探索》 CSCD 北大核心 2024年第5期1197-1210,共14页 Journal of Frontiers of Computer Science and Technology
基金 四川省科技成果转移转化项目(2020ZHCG0099) 教育部春晖计划项目(Z2018087)。
关键词 冷启动 推荐系统 元学习 上下文信息 随机游走 cold start recommender systems meta-learning context information random walk
  • 相关文献

参考文献15

二级参考文献68

  • 1王星凯,邓浩江,盛益强.基于深度学习的智能推荐系统综述[J].网络新媒体技术,2021(1):1-11. 被引量:8
  • 2Eirinaki M, Louta M D,Varlamis I. A Trust-aware System for Personalized User Recommendations in Social Networks~ J]. IEEE Trans- actions on Systems, Man, and Cybernetics: Systems ,2014, 44 (4): 409 - 421. 被引量:1
  • 3Chen C, Zeng J, Zheng X, et al. Recommender System Based on Social Trust Relationships [ C ]//IEEE 10th International Conference on e-Business Engineering (ICEBE). Coventry:IEEE, 2013:32 - 37. 被引量:1
  • 4Massa P, Avesani P. Trust-aware Recommender Systems [ C 1// Proceedings of the 2007 ACM conference on Recommender Systems. Min- neapolis : ACM ,2007 : 17 - 24. 被引量:1
  • 5Yuan W, Shu L, Chao H-C, et al. ITARS:Trust-aware Recom- mender System using Implicit Trust Networks[ J]. IET Communications,2010, 14 (4) :1709 -1721. 被引量:1
  • 6Ma H, King I, Lyu M R. Learning to Recommend with Social Trust Ensemble[ C 1//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Bos- ton: ACM,2009:203 -210. 被引量:1
  • 7Jamali M, Ester M. TrustWalker: A Random Walk Model for Combining Trust-based and hem-based Recommendation [ C ]//Proceed- ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris : ACM ,2009:397 - 406. 被引量:1
  • 8Qusai Shambour,Jie Lu. A Trust-semantic Fusion-based Rec- ommendation Approach for E-business Applications [ J ]. Decision Sup- port Systems, 2012, 54( 1 ) :768 -780. 被引量:1
  • 9Haifeng Liu, Zheng Hu, Ahmad Mian, et al. A New User Simi- larity Model to Improve the Accuracy of Collaborative Filtering [ J 1. Knowledge-Based Systems, 2014, 56 : 156 - 166. 被引量:1
  • 10许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部