期刊文献+

基于L_(1/2)范数的非局部PCA泊松噪声图像恢复改进算法

Improved Algorithm for Non-local PCA Poisson Noise Image Restoration Based on L_(1/2) Norms
下载PDF
导出
摘要 为增强NLSPCA(非局部稀疏主成分分析)算法对去除图像泊松噪声性能,提高图像块聚类精确度,增大字典下的表示系数稀疏性,改善恢复图像易模糊等问题,提出基于L_(1/2)范数的非局部PCA泊松噪声图像恢复改进算法(L_(1/2)-NLSPCA)。新算法首先对图像分割成重叠块;其次采用设计的自适应Bregman K-means算法对分割的图像块聚类;最后使用PCA构建基于L_(1/2)范数的非局部字典下的稀疏表示系数,对聚类后的图像块分组进行去噪重构。实验结果表明,L_(1/2)-NLSPCA算法与基准算法相比峰值信噪比(PSNR)提高了0.52~2.57 dB,在视觉上纹理细节更清晰。 In order to mitigate the issue of image blurring during restoration by using the original NLSPCA(Non-Local Sparse Principal Component Analysis),we propose a novel non-local PCA Poisson noise image restoration algorithm based on L_(1/2) norms(L_(1/2)-NLSPCA)to improve enhance the performance in removing Poisson noise from images.Firstly,the proposed method segments the image into overlapping blocks;secondly,the designed adaptive Bregman K-means algorithm clusters the segmented image blocks to improve the accuracy of image block clustering;finally,we utilize PCA to construct a non-local dictionary and obtain sparse representation coefficients based on L_(1/2) norms,which are subsequently employed in the denoising and reconstruction of the clustered image blocks.L_(1/2) norms can increase the sparsity of the representation coefficients under the dictionary more efficiently.Experimental results show that the L_(1/2)-NLSPCA algorithm improves the peak signal-to-noise ratio(PSNR)by 0.52 to 2.57 dB compared to with the benchmark algorithm,and the texture details are clearer visually visually clearer.
作者 李欢 张文娟 黄姝娟 肖锋 LI Huan;ZHANG Wenjuan;HUANG Shujuan;XIAO Feng(College of Sciences,Xi’an Technological University,Xi’an 710016,Shaanxi,China;College of Computer Science and Information Engineering,Xi’an Technological University,Xi’an 710016,Shaanxi,China)
出处 《咸阳师范学院学报》 2024年第2期10-15,30,共7页 Journal of Xianyang Normal University
基金 国家自然科学基金面上项目(62171361) 陕西省重点研发计划(2022GY-119) 陕西省科技厅自然科学基础研究计划项目(2021JM-440) 陕西省科技厅工业攻关项目(2020GY-066)。
关键词 泊松分布 图像去噪 主成分分析 L_(1/2)范数 Poisson distribution image denoising principal component analysis L_(1/2)norms
  • 相关文献

参考文献3

二级参考文献16

  • 1F J Anscombe. The transformation of Poisson, binomial and negative-binomial data[ J ]. Biomelrika, 1948, 35 ( 3 ) : 246 - 254. 被引量:1
  • 2B Zhang,M Fadili,J-L Starck. Wavelets,ridgelets and curvelets for poisson noise removal [ J ]. IEEE Trans Image Process, 2008,17(7) : 1093 - 1108. 被引量:1
  • 3E D. Kolaczyk. Nonparametxic estimation of intensity maps us ing Haar wavelets and Poisson noise characteristics[ J]. The As trophysical Journal, 2000,534( 1 ) :490- 505. 被引量:1
  • 4A Bijaoui, G Jammal. On the distribution of the wavelet coeffi cient for a Poisson noise[ J] .Signal Process,2001,81 (9) : 1789 -1800. 被引量:1
  • 5R Nowak, E Kolaczyk. A statistical multiscale framework for poisson inverse problems[ J]. IEEE.Transactions on Information Theory,2000,46(5) : 1811 - 1825. 被引量:1
  • 6R WiUett, R Nowak. Fast multiresolufion photon-limited image reconstruction[ A]. Proc IEEE. hat Sym Biomedical Imaging (ISBI '04) [C]. Arlington: IEEE Press,2004.1192 - 1195. 被引量:1
  • 7S Setzer. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage[ A]. Lecture Notes In Computer Science [ C]. Voss: Springer-Verlag , 2(109.5567.464 - 476. 被引量:1
  • 8Stanley Osher, Martin Burger, et al. An iterative reguladzafion method for total variation-based image restoration[ J]. Mulli- scale Model, Simul, 2005,4 (2) : 460 - 489. 被引量:1
  • 9S Osher, Y Mao, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising[ J]. Communications in Mathematical Sciences, 2010,8( 1 ) : 93 - 111. 被引量:1
  • 10M Fadili, J-L Starck, F. Murtagh. Inpainting and zooming us ing sparse representations[ J]. The Computer Journal,2009,52 (1):64-79. 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部