期刊文献+

省域精细地表覆盖数据智能化生产方案与实践

Scheme and Practice of Intelligent Production of Provincial Scope Fine Scale Land Cover Data
下载PDF
导出
摘要 为了实现基于亚米级高分遥感影像的地表覆盖数据智能化生产,在“图谱耦合”遥感认知理论和“分区-分层”地学思想指导下,研究了省域范围精细地表覆盖数据的技术路线、地类样本设计、模型体系构建方案和矢量图斑后处理策略,并成功应用于江苏全省地表覆盖数据生产。通过比较验证:整体分类精度达到90%;耕地、建筑、林地、水面等典型地物的图斑形态接近人工勾画效果;相对于传统人工作业模式,效率提升8倍。实践表明,该生产体系技术路线可行,具有一定的推广应用价值。 In order to realize the intelligent production of land cover data based on sub-meter high resolution remote sensing images,the technical route,sample rules,model system construction scheme and vector data post-processing strategy of producing provincial fine scale land cover data were studied under the guidance of Coupled Spectral and Spatial geoscientific thought.These studies were successfully applied to the production of fine land cover data in Jiangsu Province.The evaluation result shows that the overall classification accuracy reaches 90%,the shape of typical features such as crop land,buildings,forest land and water surface are close to the effect of manual operation,the efficiency is improved by 8 times compared with the traditional manual operation mode.It can be seen that the technical route of this production system is feasible and has the value of promotion and application.
作者 张竹林 ZHANG Zhu-lin(Suzhou Zhongke Tianqi Remote Sensing Technology Co.,Ltd,Suzhou Jiangsu 215000,China)
出处 《地矿测绘》 2024年第1期32-36,共5页 Surveying and Mapping of Geology and Mineral Resources
关键词 遥感影像 精细 地表覆盖 智能化生产 remote sensing image fine scale land cover intelligent production
  • 相关文献

参考文献7

二级参考文献37

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. 被引量:1458
  • 3肖鹏峰,冯学智.高分辨率遥感图像分割与信息提取[M].北京:科学出版社,2012. 被引量:15
  • 4MANAKOS I, CHATZOPOULOS-VOUZOGLANIS K, PE- TROU Z I, et al. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece [ J ]. Land, 2015(4) : 1-18. 被引量:1
  • 5BROVELLI M A, MOLINARI M E, HUSSEIN E, et al. The First Comprehensive Accuracy Assessment of Globe- Land30 at a National Level: Methodology and Results [J]. Remote Sensing, 2015(7): 4191-4212. 被引量:1
  • 6Comaniciu D, Meer P. Mean shift: A robust approach to- ward feature space analysis[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2002,24(5):603-619. 被引量:1
  • 7Huang X, Zhang L E An adaptive mean-shift analysis ap- proach for object extraction and classification from urban hyperspectral imagery[J]. IEEE Transactions on Geosci- ence and Remote Sensing, 2008,46(12):4173-4185. 被引量:1
  • 8EDISON. Code for the Edge Detection and Image Seg- mentatiON system[DB/OL].http://coewww.rutgers.edu/ri- ul/research/code/EDISON/index.html. 被引量:1
  • 9Fauvel M, Chanussot J, Benediktsson J A. A spatial-spec- tral kernel-based approach for the classification of re- mote-sensing images[J]. Pattern Recognition, 2012,45(1): 381-392. 被引量:1
  • 10Demir B, Minello L, Brnzzone L. Definition of effective training sets for supervised classification of remote sens- ing images by a novel cost-sensitive active learning meth- od[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(2): 1272-1284. 被引量:1

共引文献272

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部