期刊文献+

Pre-Training Physics-Informed Neural Network with Mixed Sampling and Its Application in High-Dimensional Systems 被引量:1

原文传递
导出
摘要 Recently,the physics-informed neural network shows remarkable ability in the context of solving the low-dimensional nonlinear partial differential equations.However,for some cases of high-dimensional systems,such technique may be time-consuming and inaccurate.In this paper,the authors put forward a pre-training physics-informed neural network with mixed sampling(pPINN)to address these issues.Just based on the initial and boundary conditions,the authors design the pre-training stage to filter out the set of the misfitting points,which is regarded as part of the training points in the next stage.The authors further take the parameters of the neural network in Stage 1 as the initialization in Stage 2.The advantage of the proposed approach is that it takes less time to transfer the valuable information from the first stage to the second one to improve the calculation accuracy,especially for the high-dimensional systems.To verify the performance of the pPINN algorithm,the authors first focus on the growing-and-decaying mode of line rogue wave in the Davey-Stewartson I equation.Another case is the accelerated motion of lump in the inhomogeneous Kadomtsev-Petviashvili equation,which admits a more complex evolution than the uniform equation.The exact solution provides a perfect sample for data experiments,and can also be used as a reference frame to identify the performance of the algorithm.The experiments confirm that the pPINN algorithm can improve the prediction accuracy and training efficiency well,and reduce the training time to a large extent for simulating nonlinear waves of high-dimensional equations.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期494-510,共17页 系统科学与复杂性学报(英文版)
  • 相关文献

共引文献2

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部