期刊文献+

基于动态调参KNN分类算法的股票涨跌预测模型分析

Analysis of the Stock Rise and Fall Prediction Model Based on the KNN Algorithm with Dynamic Parameters
下载PDF
导出
摘要 预测股票涨跌是机器学习分类算法的重要应用场景之一,根据以往实践中的经验,不同种类的股票由于数据特征不同,所以需要用携带不同参数的KNN分类模型来预测。用基于交叉熵的损失函数据训练KNN模型,以此确定KNN模型关键参数的做法,在此基础上给出能根据不同股票数据动态调整KNN算法关键参数的预测股票涨跌的模型。实践表明,这个模型在预测数据特征不同的股票涨跌情况时,均能表现出较高的准确性。 Predicting stock price fluctuations is one of the important application scenarios of machine learning classification algorithms.According to the experience,since the data features of different stocks are not the same,the key parameter of KNN algorithm is adjusted when the prediction model is built.This study provides one mechanism to confirm the key parameter of KNN by the history stock data,and provides a perdition model by KNN algorithm with dynamic parameters.This model is verified by different stock data,which is more accurate than any other models that all use the same parameter.
作者 曹宇 鲁明旭 CAO Yu;LU Mingxu(School of Artificial Intelligence Application,Shanghai Urban Construction Vocational College,Shanghai 201415,China)
出处 《微型电脑应用》 2024年第4期1-4,共4页 Microcomputer Applications
基金 中国高校产学研创新基金(2022BC097,2022IT230)。
关键词 KNN 机器学习 股票预测模型 KNN machine learning model for stock prediction
  • 相关文献

参考文献7

二级参考文献77

  • 1赵亚敏,田国行,何瑞珍,党运宽.基于RS和GIS的开封市土地覆盖分形[J].生态学杂志,2006,25(10):1218-1222. 被引量:10
  • 2范锦龙,吴炳方.复种指数遥感监测方法[J].遥感学报,2004,8(6):628-636. 被引量:80
  • 3黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 4Das G,Lin K,Mannila H,et al.Rule discovery from time series[C] //proceedings of the 4th Int'l Conference on knowledge Discovery and Data Mining.,New York:NY,August 27-31,1998:16-22. 被引量:1
  • 5Fu T C,Chung F L,et al.Pattern discovery for stock time series using Self-Organizing Maps[C] //Workshop Notes of KDD2001 Workshop on Temporal Data Mining.San Francisco:CA,Aug 26-29,2001:27-37. 被引量:1
  • 6Harms S K,Deogun J,Tadesse T.Discovering Sequential Association Rules with constraints and time lags in multiple sequences[C] //proceedings of the 13th Int'l Symposium on Methodologies for Intelligent Systems.France:Lyon,June 27-29,2002:432-441. 被引量:1
  • 7Keogh E,Lin J,Truppel W.Clustering of time series subsequences is meaningless:Implications for previous and future research[C] //Proceedings of the Third IEEE International Conference on Data Mining.USA:Washington,DC,2003:115-122. 被引量:1
  • 8Chen J R.Making subsequence time series clustering meaningful[C] //Proceedings of the Fifth IEEE International Conference on Data Mining.USA:Washington,DC,2005:114-121. 被引量:1
  • 9Yamano T,Sato K,Kaizoji T,et al.Symbolic analysis of indicator time series by quantitative sequence alignment[J].Computational Statistics and Data Analysis,2008,53:486-495. 被引量:1
  • 10Saad E W,Prokhorov D V,Wunsch D C.Comparative study of stock trend prediction using Time Delay,Recurrent and Probabilistic Neural Networks[J].IEEE Trans.Neural Networks,1990,9(6):1456-1470. 被引量:1

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部