期刊文献+

基于光学衍射神经网络的拉盖尔-高斯光束识别

Laguerre-Gaussian beam recognition based on optical diffractive neural network
下载PDF
导出
摘要 拉盖尔–高斯(Laguerre-Gaussian,LG)光束除了轨道角动量(orbital angular momentum,OAM)维度外,还拥有径向量子数p,因此LG光束可以为光通信和光计算等应用提供更多的物理自由度。但目前常见的干涉、衍射机制的LG光束模式探测方法在受到大气湍流的干扰时,识别准确率会明显下降,从而限制了其实际应用。提出了一种基于衍射神经网络(diffractive neural network,DNN)的LG光束识别方式,实现了p在1~3范围内的识别。即使在强湍流强度,衍射距离为5 m的情况下,该识别方式的识别准确率依然能达到95%以上。该DNN方法能够为准确识别LG光束模式提供有效途径,在大容量OAM通信、高维量子信息处理等方面均具有潜在应用价值。 Laguerre-Gaussian(LG)beams possess radial quantum number p in addition to orbital angular momentum(OAM)dimension,and thus LG beams can provide more physical degrees of freedom for applications such as optical communication and optical computing.However,the recognition accuracy of the LG beam pattern detection method,which is commonly used by interference and diffraction mechanisms,is significantly reduced when it is disturbed by atmospheric turbulence(AT),which limits its practical application.We propose a diffraction neural network(DNN)-based LG beam recognition method that achieves p in the range of 1-3.Even in the case of strong turbulence intensity and diffraction distance of 5 m,the recognition accuracy still reaches more than 95%.This DNN method can provide an effective way to accurately identify LG beam patterns,and has potential applications in high-capacity OAM communication and highdimensional quantum information processing.
作者 贺瑜 陈龙 胡晓楠 栾海涛 HE Yu;CHEN Long;HU Xiaonan;LUAN Haitao(Institute of Photonic Chips,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《光学仪器》 2024年第2期77-85,共9页 Optical Instruments
基金 国家重点研发计划(2022YFB2804301)。
关键词 拉盖尔–高斯光束 轨道角动量 大气湍流 衍射神经网络 Laguerre-Gaussian beam orbital angular momentum atmospheric turbulence diffraction neural network
  • 相关文献

参考文献1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部