期刊文献+

On Hamiltonian Property of Cayley Digraphs

原文传递
导出
摘要 Let G be a finite group generated by S and C(G,S) the Cayley digraphs of G with connection set S.In this paper,we give some sufficient conditions for the existence of hamiltonian circuit in C(G,S),where G=Zm×H is a semiproduct of Zmby a subgroup H of G.In particular,if m is a prime,then the Cayley digraph of G has a hamiltonian circuit unless G=Zm×H.In addition,we introduce a new digraph operation,called φ-semiproduct of Γ1by Γ2and denoted by Γ1×Γ_φΓ2,in terms of mapping φ:V(Γ2)→{1,-1}.Furthermore we prove that C(Zm,{a})×_φ C(H,S) is also a Cayley digraph if φ is a homomorphism from H to{1,-1} ≤ Zm~*,which produces some classes of Cayley digraphs that have hamiltonian circuits.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期547-556,共10页 应用数学学报(英文版)
基金 sponsored by the National Natural Science Foundation of China (No. 11671344) Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2022D01A218) the Scientific Research Projects of Universities in Xinjiang Province (No. XJEDU2019Y030)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部