摘要
【目的】具有可调谐能力的高频微波载波(GHz)在第五代移动通信技术(5G)/第六代移动通信技术(6G)无线网络、雷达系统和卫星通信领域中有着广泛的应用。由于比较简单的系统结构、大带宽和低损耗的优点,基于光子技术生成高频可调谐微波载波的技术方案吸引了国内外研究团队的广泛关注。由于目前C波段有着成熟的商用器件,因此目前光生微波实验多在C波段进行。随着波分复用(WDM)—光载射频(ROF)技术借助WDM系统在光频域的合/分波来灵活实现微波频段的合/分波,利用ROF系统采用光生微波技术来简化基站配置,使得C波段的有限带宽资源(35 nm, 1 530~1 565 nm)越来越紧张。因此,光生微波技术的研究有着向更宽光谱范围扩展的驱动力。U波段可以提供宽至50 nm(1 625~1 675 nm)的信道带宽来缓解C波段的信道利用压力。在U波段,标准单模光纤已实现低至0.195 dB/km(@1 625 nm)的光功率损耗,特别是,掺铥光纤放大器在U波段也可实现达到18.7 dB(@1 655 nm)的大带宽增益。因此,基于标准单模光纤的WDM系统可向U波段扩展,从而促使WDM-ROF技术向这一波段延伸,进而带动光生微波技术向U波段拓展。文章研究了U波段的光生微波技术。【方法】从数学模型上看,现有光生微波技术对所应用的光载波波段是透明的,只需选择对应工作波段的光子学器件就可在任意波段使用这些方法来产生微波载波。从原理上看,C波段的光子学器件(如偏振控制器、相位调制器(PM)和光纤移相器(FPS)等)可以工作在U波段,这些器件的工艺技术成熟并易于购置。因此,文章采用C波段的PM、FPS和光耦合器等光子学器件,基于U波段光载波搭建了光生微波载波系统。【结果】最终基于该系统产生了调谐范围覆盖7.5~12.0 GHz、杂散抑制比达29.6~35.2 dB的可调谐微波载波。【结论】文章通过公式原理分析和实验验证,实现了将光�
【Objective】High-frequency microwave carriers(GHz)with tunable capability have a wide range of applications in 5th Generation Mobile Communication Technology(5G)/6th Generation Mobile Communication Technology(6G)wireless networks,radar systems,and satellite communications.Due to the relatively simple structure of the system,the large bandwidth and the low loss,the technical scheme of generating high-frequency tunable microwave carriers based on photonic technology has attracted extensive attention from domestic and international research teams.Current photogenerated microwave experiments are mostly conducted in C-band wavelengths because of the mature commercial devices.Meanwhile,the Wavelength Division Multiplexing(WDM)-Radio Over Fiber(ROF)technology integrates the WDM technology with the ROF technology so as to flexibly realize the combining/splitting of microwave bands with the help of the combining/splitting of WDM system in the optical frequency domain.The ROF part of the system employs photogenerated microwave technology to simplify the base station configuration.Constrained by the limited bandwidth resources in the C-band wavelengths(35 nm,1530~1565 nm),there is a drive for the generation of microwave to expand to wider spectral ranges.The U-band wavelengths can also provide channel bandwidths as wide as 50 nm(1625~1675 nm)to alleviate the channel utilization pressure in the C-band wavelengths;In the U-band wavelengths,Standard Single Mode Fibers(SSMFs)have achieved optical power loss as low as 0.195 dB/km(@1625 nm);In particular,thulium-doped fiber amplifiers have also demonstrated a large bandwidth gain of 18.7 dB(@1655 nm).These advantages attract SSMFs-based WDM systems to expand into the U-band,which leads to the extension of WDM-ROF technology into long wavelengths,and in turn leads to the expansion of photogenerated microwave technology.Therefore,this paper studies the photogenerated microwave technology in the U-band.【Methods】From the mathematical model,the commonly used photogenerated micr
作者
姬迪
胡志涛
王柱天
庞拂飞
叶楠
宋英雄
JI Di;HU Zhitao;WANG Zhutian;PANG Fufei;YE Nan;SONG Yingxiong(Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200444,China)
出处
《光通信研究》
北大核心
2024年第2期116-120,共5页
Study on Optical Communications
基金
国家重点研发计划资助项目(2019YFB1802901)
国家自然科学基金资助项目(62175143)。
关键词
光生微波载波
U波段
光相位调制器
强度调制
频率可调谐
杂散抑制比
photogenerated microwave carrier
U-band
optical PM
intensity modulation
frequency-tunable
spurious suppression ratio