期刊文献+

基于U波段光波产生频率可调谐的微波载波

Generation of Frequency-tunable Microwave Carriers based on the U-band Lightwave Carrier
下载PDF
导出
摘要 【目的】具有可调谐能力的高频微波载波(GHz)在第五代移动通信技术(5G)/第六代移动通信技术(6G)无线网络、雷达系统和卫星通信领域中有着广泛的应用。由于比较简单的系统结构、大带宽和低损耗的优点,基于光子技术生成高频可调谐微波载波的技术方案吸引了国内外研究团队的广泛关注。由于目前C波段有着成熟的商用器件,因此目前光生微波实验多在C波段进行。随着波分复用(WDM)—光载射频(ROF)技术借助WDM系统在光频域的合/分波来灵活实现微波频段的合/分波,利用ROF系统采用光生微波技术来简化基站配置,使得C波段的有限带宽资源(35 nm, 1 530~1 565 nm)越来越紧张。因此,光生微波技术的研究有着向更宽光谱范围扩展的驱动力。U波段可以提供宽至50 nm(1 625~1 675 nm)的信道带宽来缓解C波段的信道利用压力。在U波段,标准单模光纤已实现低至0.195 dB/km(@1 625 nm)的光功率损耗,特别是,掺铥光纤放大器在U波段也可实现达到18.7 dB(@1 655 nm)的大带宽增益。因此,基于标准单模光纤的WDM系统可向U波段扩展,从而促使WDM-ROF技术向这一波段延伸,进而带动光生微波技术向U波段拓展。文章研究了U波段的光生微波技术。【方法】从数学模型上看,现有光生微波技术对所应用的光载波波段是透明的,只需选择对应工作波段的光子学器件就可在任意波段使用这些方法来产生微波载波。从原理上看,C波段的光子学器件(如偏振控制器、相位调制器(PM)和光纤移相器(FPS)等)可以工作在U波段,这些器件的工艺技术成熟并易于购置。因此,文章采用C波段的PM、FPS和光耦合器等光子学器件,基于U波段光载波搭建了光生微波载波系统。【结果】最终基于该系统产生了调谐范围覆盖7.5~12.0 GHz、杂散抑制比达29.6~35.2 dB的可调谐微波载波。【结论】文章通过公式原理分析和实验验证,实现了将光� 【Objective】High-frequency microwave carriers(GHz)with tunable capability have a wide range of applications in 5th Generation Mobile Communication Technology(5G)/6th Generation Mobile Communication Technology(6G)wireless networks,radar systems,and satellite communications.Due to the relatively simple structure of the system,the large bandwidth and the low loss,the technical scheme of generating high-frequency tunable microwave carriers based on photonic technology has attracted extensive attention from domestic and international research teams.Current photogenerated microwave experiments are mostly conducted in C-band wavelengths because of the mature commercial devices.Meanwhile,the Wavelength Division Multiplexing(WDM)-Radio Over Fiber(ROF)technology integrates the WDM technology with the ROF technology so as to flexibly realize the combining/splitting of microwave bands with the help of the combining/splitting of WDM system in the optical frequency domain.The ROF part of the system employs photogenerated microwave technology to simplify the base station configuration.Constrained by the limited bandwidth resources in the C-band wavelengths(35 nm,1530~1565 nm),there is a drive for the generation of microwave to expand to wider spectral ranges.The U-band wavelengths can also provide channel bandwidths as wide as 50 nm(1625~1675 nm)to alleviate the channel utilization pressure in the C-band wavelengths;In the U-band wavelengths,Standard Single Mode Fibers(SSMFs)have achieved optical power loss as low as 0.195 dB/km(@1625 nm);In particular,thulium-doped fiber amplifiers have also demonstrated a large bandwidth gain of 18.7 dB(@1655 nm).These advantages attract SSMFs-based WDM systems to expand into the U-band,which leads to the extension of WDM-ROF technology into long wavelengths,and in turn leads to the expansion of photogenerated microwave technology.Therefore,this paper studies the photogenerated microwave technology in the U-band.【Methods】From the mathematical model,the commonly used photogenerated micr
作者 姬迪 胡志涛 王柱天 庞拂飞 叶楠 宋英雄 JI Di;HU Zhitao;WANG Zhutian;PANG Fufei;YE Nan;SONG Yingxiong(Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200444,China)
出处 《光通信研究》 北大核心 2024年第2期116-120,共5页 Study on Optical Communications
基金 国家重点研发计划资助项目(2019YFB1802901) 国家自然科学基金资助项目(62175143)。
关键词 光生微波载波 U波段 光相位调制器 强度调制 频率可调谐 杂散抑制比 photogenerated microwave carrier U-band optical PM intensity modulation frequency-tunable spurious suppression ratio
  • 相关文献

参考文献1

二级参考文献13

  • 1Robert D Maurer , Schultz Peter C. Fused Silica Opti- cal Waveguide:USA, 3659915[P] 1972-05-02. 被引量:1
  • 2Corning. The Worlds First Low-Loss Optical Fiber for Telecommunications [ EB/OL]. (2010-07-15) E 2014- 11-241. http://www, coming, com/opticalfiber/inno- ration/fortyyearsoffiber/index, aspx. 被引量:1
  • 3MacChesney J B, O'Connor P B, DiMarcello F V, et al. Preparation of low loss optical fibers using simulta- neous vapor phase deposition and fusion [C]// 10th Int 1 Congress on Glass. Kyoto: Ceramic Society, 1974: 40--45. 被引量:1
  • 4Osanai H, Shioda T, Moriyama T, et al. Effect of dopants on transmission loss of low-OH-content opti- cal fibres [J]. Electronics Letters, 1976, 12 (14): 549--550. 被引量:1
  • 5Lines M E. Ultralow-Loss Glasses [J]. Annual Re- view of Materials Science,1986, 16: 113--135. 被引量:1
  • 6Kitayama K, Uesugi Naoshi, Ohashi M,et al. Design and performance of ultra-low-loss single-mode fiber cable in 1. 5-tLm wavelength region [J]. Lightwave Technology, 1985,3(3): 579--585. 被引量:1
  • 7Kanamori H, Yokota H, Tanaka G, et al. Transmis- sion Characteristics and reliability of pure silica core single mode fibers [J]. Journal of Lightwave Technol- ogy, 1986, LT-4(8):1144--1150. 被引量:1
  • 8Nagayama K, Kakui M, Matsui M, et al. Ultra Low Loss (0. 1484 dB/km) Pure Silica Core Fibre and Ex- tension of Tranmission Distance [J]. Electronics Let- ters, 2002, 38(20) .. 1168--1169. 被引量:1
  • 9Coming, Press Releas. Corning and Nortel Combine Optical Expettise to Lower the Cost of Long-Haul Networks [EB/OL]. (2007-03-13)[2014-11-24]. Ht- tp..//www, corning, com/opticalfiher/media_ center/ press_releases/2007/2007032201, aspx. 被引量:1
  • 10Hirano M, Haruna T, Tamura Y, et al. Record Low Loss, Record High FOM Optical Fiber with Manufac- turable Process [C]//OFC/NFOEC 2013. Anaheim, CA.. OSA, 2013 .. 1--3. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部