期刊文献+

供气孔角度对径向预旋系统特性影响的数值研究

Numerical Study on Influence of Supply Hole Angle on Radial Pre-swirl System
下载PDF
导出
摘要 为降低航空发动机径向预旋系统的流阻,增加温降,研究供气孔内的流动特性,建立径向预旋系统三维模型,在不同预旋角和旋转雷诺数条件下,采用数值方法研究不同供气孔角度下预旋系统的特性。结果表明:随着供气孔角度的增加,孔内的旋涡逐渐减小,孔内流通性得到改善;系统温降系数增加,在高旋转雷诺数下增幅较大,最大可提高19.3%;供气孔的流量系数有显著提高,最大可提高64.9%,降低了系统的流阻,从而预旋喷嘴出口流量系数及系统无量纲质量流量均有所提高。 In order to reduce the flow resistance and increase the temperature drop of the aero-engine radial pre-swirl system,the flow characteristics inside the supply hole was studied and a three-dimensional model of the radial pre-swirl system was established.The numerical simulation was conducted to study the features of different pre-swirl systems at different pre-swirl nozzle angles and in rotational Reynolds numbers.The results show that as the angle of the supply hole increases,the vortex inside the hole gradually decreases,which improves the flowability of the supply hole.Temperature drop coefficient increases with the supply hole increases,and the increase of temperature drop coefficient is larger in high rotational Reynolds number,up to 19.3%.After the angle of supply hole is increased,the discharge coefficient is significantly improved,up to 64.9%,which reduces the flow resistance of the system,thus the discharge coefficient of the pre-swirl nozzle outlet and the system dimensionless mass flow rate being improved.
作者 柴金孟 王锁芳 沈文杰 CHAI Jinmeng;WANG Suofang;SHEN Wenjie(College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2024年第2期96-100,共5页 Machine Building & Automation
基金 国家科技重大专项资助项目(2017-Ⅲ-0011-0037)。
关键词 航空发动机 径向预旋 供气孔角度 温降 流阻 流量系数 aero-engine radial pre-swirl supply hole angle temperature drop flow resistance discharge coefficient
  • 相关文献

参考文献8

二级参考文献52

  • 1冶萍,张靖周.有预旋进气转静盘腔中的流动和换热特性数值研究[J].航空动力学报,2004,19(3):370-374. 被引量:16
  • 2杨成凤,张靖周.高旋转雷诺数下预旋进气转-静盘腔流动换热特性[J].航空动力学报,2006,21(2):326-330. 被引量:6
  • 3王锁芳,朱强华,张羽,栾海峰,黄爱霞.预旋进气位置对转静盘腔换热影响的数值研究[J].航空动力学报,2007,22(8):1227-1232. 被引量:25
  • 4Geis T,Dittmsnn M,Dullenkopf K.Cooling air temperature reduction in a direct transfer preswirl system[J].Transactions of the ASME.Journal of Engineering for Gas Turbines and Power,2004,126(4):809-815. 被引量:1
  • 5Dimmann M,Geis T,Schramm V,et al.Discharge coefficients of a pre-swirl system in secondary air systems[J].ASME J.Turbomach,2002,124:119-124. 被引量:1
  • 6Dittmann M,Dullenkopf K,Wittig S.Direct-transfer preswirl system:A one-dimensional modular characterization of the flow[J].ASME J.Engineering for Gas Turbines and Power,2005,127:383-388. 被引量:1
  • 7Chew J W,Hills N J,Ciampoli F,et al.Pre-swirled cooling air delivery system performance[C]//Proceedings of ASME Turbo Expo 2008:Power for Land,Sea and Air.Reno-Tahoe,NV,United states:American Society of Mechanical Engineers,2005:1129-1137. 被引量:1
  • 8Karabay H,Chen J X,Pilbrow R,et al.Flow in a "coverplate" preswirl rotor-stator system[J].Journal of Turbomachinery,1999,121 (1):160-166. 被引量:1
  • 9Lewis P,Wilson M,Lock G,et al.Physical interpretation of flow and heat transfer in preswirl systems[J].Transactions of the ASME.Journal of Engineering for Gas Turbines and Power,2007,129(3):769-777. 被引量:1
  • 10Lewis P,Wilson M,Lock G D,et al.Effect of radial location of nozzles on performance of preswirl systems:a computational and theoretical study[J].Journal of Power and Energy,2009,223 (A2):179-190. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部