摘要
针对高温振动环境下钛合金声衬动响应变化规律及疲劳失效问题,以仿真分析和试验相结合的方法开展钛合金声衬高温环境下的振动特性研究。研究结果表明:200℃下钛合金声衬1阶固有频率计算结果和试验值吻合较好,误差在8%以内。在40g振动激励下,通过对比仿真结果与试验结果发现速度响应的误差在26%以内,验证了仿真分析方法的可用性与准确性。使用该数值方法计算了热振环境下声衬的应力分布,发现声衬应力最大位置出现在蜂窝芯上,面板的应力水平整体相对较低;随着蜂窝芯高度和厚度的增大,声衬的应力水平会下降,而声衬的应力水平会随着面板厚度得增大而升高;孔径的大小对声衬强度影响可以忽略。
For the problem of dynamic response and fatigue failure of titanium alloy acoustic liner under high temperature vibration environment,the vibration characteristics of titanium alloy acoustic liner under high temperature environment were studied by combing simulation analysis and test.The results showed that the calculation results of first-order natural frequency of titanium alloy acoustic liner at 200℃were in good agreement with the test values,and the error was within 8%.Under 40g vibration environment,by comparing the simulation results with the test results,it was found that the error of the velocity response was within 26%,verifying the reliability of the numerical simulation.Using this numerical method,the stress distribution of the acoustic liner under the thermal vibration environment was calculated,and it was found that the maximum stress of the acoustic liner appeared on the honeycomb core,while the overall stress level of the panel was relatively low.With the increase of the height and thickness of the honeycomb core,the stress level of the acoustic liner decreased,while the stress level of the acoustic liner increased with the increasing thickness of the panel,and the influence of the size of the aperture on the strength of the acoustic liner can be ignored.
作者
王晨
李颖
霍施宇
由于
尚一博
李斌
WANG Chen;LI Ying;HUO Shiyu;YOU Yu;SHANG Yibo;LI Bin(Department of Basic Sciences,Air Force Engineering University,Xi’an 710051,China;Aircraft Strength Research Institute of China,Aviation Industry Corporation of China,Limited,Xi’an 710065,China)
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2024年第1期81-89,共9页
Journal of Aerospace Power
基金
陕西省自然科学基础研究计划(2023-JC-QN-0094,2023-JC-QN-0044)
航空发动机及燃气轮机重大专项(J2019-Ⅳ-0014-0082)。
关键词
钛合金声衬
蜂窝芯
穿孔板
热振试验
强度设计
titanium alloy acoustic liner
honeycomb core
perforated panel
thermal-vibration test
strength design