摘要
近年来建筑空调系统的用电负荷在电网总负荷中的占比不断增大,如何高效推动建筑空调系统积极参与电力需求响应,对实现“削峰填谷”、提高电力系统灵活性、保障电网安全稳定运行具有重要意义。建筑空调系统需求响应潜力的科学评估是实现空调负荷柔性调控的基础,难点在于多因素耦合影响,量化评估难。以夏热冬冷地区某办公建筑为例,基于EnergyPlus软件模拟,通过控制变量法对影响建筑空调系统需求响应潜力的4种因素(室外天气、建筑围护结构性能、空调系统性能、需求响应策略)进行敏感性分析。结果表明,建筑围护结构性能变化对空调系统需求响应潜力影响较小,而其他3种因素影响较大。其中,当夏季室外空气焓值由70~75 kJ/kg上升至85~90 kJ/kg时,空调系统参与需求响应的峰值负荷削减量(即需求响应潜力)由13.01 W/m^(2)提升至17.54 W/m^(2)(增大35%);当多联机系统COP由4.0降低至2.5时,需求响应潜力由19.51 W/m^(2)提升至31.21 W/m^(2)(增大60%);当水冷式空调系统COP由6.0降低至3.0时,需求响应潜力由11.60 W/m^(2)提升至23.20 W/m^(2)(增大100%);当需求响应策略由室温设定值上升2℃变为上升4℃时,需求响应潜力由10.74 W/m^(2)提升至17.28 W/m^(2)(增大61%)。
In recent years,the proportion of electricity consumption from air conditioning systems in the total grid load has been increasing continuously.Therefore,active participation of air conditioning systems in electrical power demand response is crucial for achieving peak-load shifting and valley-load filling,enhancing the flexibility of the power system,and ensuring the safe and stable operation of the grid.The scientific assessment of the demand response potential of air conditioning systems is the basis for achieving flexible control of air conditioning loads.The challenge lies in being susceptible to the coupling effects of multiple factors,making quantitative assessment difficult.Taking an office building in a hot summer and cold winter zone as an example,this study conducts sensitivity analysis of four factors(weather,building envelope performance,air conditioning system performance,and demand response strategies)that influence the demand response potential of air conditioning systems using control variable method based on the simulation in EnergyPlus software.The results indicate that the impact of building envelope performance on the demand response potential of air conditioning system is relatively small,while the other three factors have greater influences.Specifically,when the enthalpy of outdoor air increases from 70~75 kJ/kg to 85~90 kJ/kg in summer,the peak load reduction of air conditioning system when participating in demand response events(i.e.demand response potential)rises from 13.01 W/m^(2) to 17.54 W/m^(2)(a 35%increase).When the COP of VRF air conditioning system decreases from 4.0 to 2.5,the demand response potential increases from 19.51 W/m^(2) to 31.21 W/m^(2)(a 60%increase).When the COP of water-cooled air conditioning system decreases from 6.0 to 3.0,the demand response potential increases from 11.60 W/m^(2) to 23.20 W/m^(2)(a 100%increase).Furthermore,changing the demand response strategy from a 2℃increase in room temperature setpoint to a 4℃increase results in the demand response pote
作者
汤卓凡
张燚虎
魏子梁
耿阳
赵建立
林波荣
TANG Zhuofan;ZHANG Yihu;WEI Ziliang;GENG Yang;ZHAO Jianli;LIN Borong(State Grid Shanghai Electric Power Company,Shanghai 200030,China;Shanghai Key Laboratory of Smart Grid Demand Response,Shanghai 200030,China;School of Architecture,Tsinghua University,Beijing 100084,China;Key Laboratory of Eco Planning and Green Building,Ministry of Education,Tsinghua University,Beijing 100084,China)
出处
《建筑节能(中英文)》
CAS
2024年第3期74-81,共8页
Building Energy Efficiency
基金
国家电网总部科技基金资助项目(5400-202340383A-2-3-XG)。
关键词
需求响应
空调系统
影响因素分析
办公建筑
夏热冬冷地区
demand response
air conditioning system
influencing factors analysis
office building
hot summer and cold winter zone