期刊文献+

Low-rank matrix recovery with total generalized variation for defending adversarial examples

原文传递
导出
摘要 Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期432-445,共14页 信息与电子工程前沿(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.62072024) the Outstanding Youth Program of Beijing University of Civil Engineering and Architecture,China(No.JDJQ20220805) the Shenzhen Stability Support General Project(Type A),China(No.20200826104014001)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部