摘要
以硫化钠和硝酸银为原料,采用了化学浴沉积法将Ag_(2)S沉积在高度有序TiO_(2)纳米管(TNTs)上制备出Ag_(2)S/TNTs析氢电极。采用扫描电子显微镜(SEM)、X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)对电极进行表征,结果显示Ag_(2)S颗粒均匀的沉积在TiO_(2)纳米管表面,且没有破坏纳米管原有的形态结构。在0.5 mol/L H_(2)SO_(4)条件下,通过线性扫描伏安法(LSV)、塔菲尔曲线(Tafel)、双电层电容和电化学阻抗谱(EIS)等电化学测试分析了不同Ag_(2)S沉积圈数所得的复合电极的析氢性能。与TNTs相比,Ag_(2)S/TNTs显示出更优异的析氢性能。Ag_(2)S沉积圈数为9圈时制备出的复合电极在10 mA/cm^(2)电流密度时,过电位达到了288.14 mV,Tafel斜率为61.8 mV/dec,双电层电容分别为54.7 mF/cm^(2),传荷内阻降低到0.7Ω/cm^(2)。
The Ag_(2)S/TNTs hydrogen evolution electrode was prepared by chemical bath deposition of Ag_(2)S on highly ordered TiO_(2)nanotubes(TNTs)using sodium sulfide and silver nitrate as starting materials.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)were used to characterize the electrodes.The results showed that Ag_(2)S particles were uniformly deposited on the surface of TiO_(2)nanotubes without destroying the original morphology and structure of the nanotubes.The hydrogen evolution performance of the composite electrode with different deposition cycles of Ag_(2)S was analyzed by linear sweep voltammetry(LSV),Tafel curve,double layer capacitance analysis and electrochemical impedance spectroscopy(EIS)at room temperature of 0.5 mol/L H_(2)SO_(4).Compared with TNTs,Ag_(2)S/TNTs showed better hydrogen evolution performance.When the number of Ag_(2)S deposition cycles is 9,the overpotential of the prepared composite electrode reaches 288.14 mV at the current density of 10 mA/cm^(2),the Tafel slope is 61.8 mV/dec,the double layer capacitance is 54.7 mF/cm^(2),and the internal resistance of charge transfer is reduced to 0.7Ω/cm^(2).
作者
刘文凯
罗洁
杨梓群
张越纯
LIU Wenkai;LUO Jie;YANG Ziqun;ZHANG Yuechun(Schoolof Materials Science and Engineering,Central South University ofForestry and Technology,Changsha 410004,China)
出处
《功能材料》
CAS
CSCD
北大核心
2024年第3期3122-3127,3137,共7页
Journal of Functional Materials
基金
国家重点研发计划项目(2019YFB1503805)
湖南省自然科学基金项目(2019JJ40535)
工信部绿色制造系统集成项目资助(2016-51)
湖南省大学生创新创业训练计划项目(2022-2824)。
关键词
硫化银
TiO_(2)纳米管
沉积
电催化析氢
电催化全解水
Ag 2S
TiO_(2)nanotubes
deposition
electrocatalytic hydrogen evolution
electrocatalytic complete hydrolysis of water