期刊文献+

Linear regression under model uncertainty

原文传递
导出
摘要 We reexamine the classical linear regression model when it is subject to two types of uncertainty:(i)some covariates are either missing or completely inaccessible,and(ii)the variance of the measurement error is undetermined and changing according to a mechanism unknown to the statistician.By following the recent theory of sublinear expectation,we propose to characterize such mean and variance uncertainty in the response variable by two specific nonlinear random variables,which encompass an infinite family of probability distributions for the response variable in the sense of(linear)classical probability theory.The approach enables a family of estimators under various loss functions for the regression parameter and the parameters related to model uncertainty.The consistency of the estimators is established under mild conditions in the data generation process.Three applications are introduced to assess the quality of the approach including a forecasting model for the S&P Index.
出处 《Probability, Uncertainty and Quantitative Risk》 2023年第4期523-546,共24页 概率、不确定性与定量风险(英文)
基金 supported by the National Key R&D program of China(Grant Nos.2018YFA0703900 and ZR2019ZD41) the National Natural Science Foundation of China(Grant No.11701330) Taishan Scholar Talent Project Youth Project.
  • 相关文献

参考文献2

二级参考文献45

  • 1Allais, M., La psychologie de l'home rationnel devant le risque: critique des postulats et axiomes de l'cole Amricaine, Econometrica, 21:4(1953), 503-546. Translated and reprinted in Allais and Hagen,1979. 被引量:1
  • 2Artzner, P., Delbaen, F., Eber, J. M. & Heath, D., Coherent measures of risk, Math. Finance, 9(1999),203-228. 被引量:1
  • 3Barrieu, P. & El Karoui, N., Optimal derivatives design under dynamic risk measures, Contemp. Math.,Amer. Math. Soc., 315(2004), 13-25. 被引量:1
  • 4Bensoussan, A., Stochastic Control by Functional Analysis Methods, North-Holland, 1982. 被引量:1
  • 5Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectations, Electron. Comm. Probab, 5(2000), 26. 被引量:1
  • 6Chen, Z., A property of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I Math., 326:4(1998), 483-488. 被引量:1
  • 7Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica,70:4(2002), 1403-1443. 被引量:1
  • 8Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration-consistent nonlinear expectations and related g-expectations, Probab. Theory Relat. Fields, 123(2002), 1-27. 被引量:1
  • 9Crandall, M. G., Ishii, H. & Lions, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (NS), 27(1992), 1-67. 被引量:1
  • 10Chen, Z. & Peng, S., A Nonlinear Doob-Meyer type decomposition and its application, SUT Journal of Mathematics (Japan), 34:2(1998), 197-208. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部