期刊文献+

Hilbert空间的正交分解及其应用

Characterization of the Orthogonal Decomposition of the Hilbert Space and Application
下载PDF
导出
摘要 基于Riesz-表示算子,给出了实Hilbert内积空间按某种连续双线性泛函的正交分解的刻划,应用于鞍点变分问题,获得了解的分离及其强制型于问题. This paper proposes a characterization of the orthogonal subspace of Hilbert space, where the orthogonal decomposition is derived from some continuous bilinear form. As an application, the solutions to saddle-point problems are decoupled, and as a result two coercive subproblems are obtained, which can be separately approximated.
作者 段火元
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第4期599-602,共4页 数学研究与评论(英文版)
关键词 正交分解 HILBERT空间 Riesz-表示算子 鞍点变分问题 逼近 Hilbert space orthogonal decomposition Riesz-representation saddle-point problem.
  • 引文网络
  • 相关文献

参考文献6

  • 1BREZZI F, FORTIN M. Mixed and Hybrid Finite Element Methods [M]. Springer Verlag, New York, 1991. 被引量:1
  • 2CIARLET P G. The Finite Element Method for Elliptic Problems [M]. North-Holland, Amsterdam,1987. 被引量:1
  • 3DUAN Huo-yuan. New Mixed Variational Principles (in Chinese),Thesis,Institute of ComputationalMathemtics and Scientific/Engineering computing ,Chinese Academy of Sciences,Beijing, 1997. 被引量:1
  • 4GIRAULT V, RAVIART P A. Finote Element Methods for Navier-Stokes Equations [M]. Theory and Algorithms, Springer-Verlag, Berlin, 1986. 被引量:1
  • 5ODEN J T, REDDY J N. An Introduction to the Mathematical Theory of Finite Elements [M]. New York, Wiley, 1974. 被引量:1
  • 6YOSIDA K. Functional Analysis(sixth edition) [M]. Springer-Verlag, New-York, 1980. 被引量:1
;
使用帮助 返回顶部