期刊文献+

基于深度神经网络的存储压缩方法研究

Research on Storage Compression Method Based on Deep Neural Network
下载PDF
导出
摘要 由于深度神经网络存在内存密集和计算密集两大特征,其无法满足移动设备存储的需求。为此,提出一种基于深度神经网络的存储压缩方法,该方法通过SVD矩阵奇异值分解方法,并辅以网络剪枝技术,在深度神经网络运行过程中引入少量神经元,并设定神经元数连接数,降低权重规模。通过一系列方法对策,尽可能在不损失精度的前提下,对深度神经网络模型大幅度压缩,其压缩程度达到了5×、15×。 Deep neural network has two characteristics:memory intensive and computation intensive,which makes it unable to meet the storage needs of mobile devices.Therefore,a storage compression method based on deep neural network is proposed.This method introduces a small number of neurons during the operation of deep neural network through SVD matrix singular value decomposition method and network pruning technology,and sets the number of neuron connections to reduce the weight model.Through a series of methods and countermeasures,the deep neural network model is greatly compressed without loss of accuracy as far as possible,and the compression degree reaches 5×、15×。
作者 陈小祥 CHEN Xiao-xiang(College of Information Technology,Anqing Vocational and Technical College,Anhui,Anqing 246003)
出处 《贵阳学院学报(自然科学版)》 2024年第1期64-68,共5页 Journal of Guiyang University:Natural Sciences
基金 2018年安徽高校自然科学研究项目“教学过程支撑系统的开发与应用”(项目编号:KJ2018ZD067)。
关键词 深度神经网络 存储压缩方法 网络剪枝技术 矩阵奇异值分解方法 deep neural network storage compression method network pruning technology matrix singular value decomposition method
  • 相关文献

参考文献11

二级参考文献117

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110. 被引量:1
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893. 被引量:1
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. 被引量:1
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469. 被引量:1
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48. 被引量:1
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538. 被引量:1
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404. 被引量:1
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010. 被引量:1

共引文献805

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部