期刊文献+

基于聚焦激波的微结构非接触式激励方法研究

Study on non-contact excitation method of microstructures based on focused shock wave
下载PDF
导出
摘要 为了解决MEMS微结构非接触式激励的问题,提出了一种基于聚焦激波的非接触式激励方法。该方法的基本原理是利用高压电容空气放电来产生激波,再通过半椭球腔体对激波进行聚焦,从而实现对微结构的非接触式激励。基于该方法搭建了微结构动态特性测试系统,并对矩形等截面和T型单晶硅微悬臂梁的动态特性进行了测试实验,获得了两种微悬臂梁的一阶有阻尼固有频率和阻尼比。实验结果表明:矩形等截面和T型单晶硅微悬臂梁一阶无阻尼固有频率分别为5 912 Hz和2 150 Hz。通过动态测试实验验证了基于聚焦激波非接触式激励方法在MEMS微结构激励上的有效性。 To solve the problem of non-contact excitation of MEMS microstructures,a non-contact excitation method based on focused shock waves using is proposed.The fundamental principle of this method is using high-voltage capacitive air discharge to generate shock waves,then focus these shock waves through a hemispherical chamber so as to achieve non-contact excitation of the microstructures.A testing system for dynamic characteristics of microstructures is built up based on this approach.Experiments are performed on the dynamic characteristics of rectangular equal-section and T-shaped single-crystal silicon microcantilevers.The first-order damped natural frequencies and damping ratios of the two microcantilevers are obtained.The experimental results show that the first-order undamped natural frequency of the rectangular equal-section and single-crystal silicon microcantilever are 5912 Hz and 2150 Hz,respectively.Effectiveness of this method based on focused shock wave non-contact excitation in MEMS microstructures exciting is verified by dynamic testing experiments.
作者 佘东生 于震 田江平 SHE Dongsheng;YU Zhen;TIAN Jiangping(College of Control Science and Engineering,Bohai University,Jinzhou 121013,China;School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《传感器与微系统》 CSCD 北大核心 2024年第4期41-44,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金面上项目(52071064) 辽宁省教育厅重点项目(LJKZ1009)。
关键词 聚焦激波 MEMS微结构 非接触式激励 动态特性测试 focused shock wave MEMS microstructures non-contact excitation dynamic characteristic testing
  • 相关文献

参考文献6

二级参考文献55

  • 1PRYPUTNIEWIEZ R J. Current trends and future direc- tions in MEMS [ J]. Experimental Mechanics, 2012, 52 (3) : 289-303. 被引量:1
  • 2TEYSSIEUX D, EUPHRASIE S, CRETIN B. MEMS in- plane motion/vibration measurement system based CCD camera [J]. Measurement, 2011, 44(10):2205-2216. 被引量:1
  • 3ALKHARABSHEH S A, YOUNIS M I. Dynamics of MEMS arches of flexible supports [J]. Journal of Micro- electromechanical Systems, 2013, 22(1 ) :216-224. 被引量:1
  • 4KAR S K, SWAMY K B M, MUKHERJEE B, et al. Testing of MEMS capacitive accelerometer structure through electro-static actuation [ J ]. Microsystem Tech- nologies, 2013, 19 (1) :79-87. 被引量:1
  • 5KIM B H, KIM S I, LEE J C, et al. Dynamic character- istics of a piezoelectric driven inkjet printhead fabricated using MEMS technology [ J ]. Sensors and Actuators A: Physical, 2012, 173(1): 244-253. 被引量:1
  • 6PUSTAN M, ROCHUS V, GOLINVAL J C, et al. Me- chanical and tribological characterization of a thermally actuated MEMS cantilever [ J ]. Microsystem Technolo- gy, 2012, 18(3): 247-256. 被引量:1
  • 7KANG X, JAY C J, QUAN C, et al. Dynamic char- acterization of MEMS structures by ultrasonic wave excitation[ J] . Journal of Micromechanics and Micro- engineering, 2007, 17(12) : 2426-2431. 被引量:1
  • 8张俞.膨胀波与激波[M].北京:北京大学出版社,1983. 被引量:1
  • 9余东生.高、低温环境下典型微结构动态特性及测试技术研究[D].大连:大连理工大学,2013:32-37. 被引量:1
  • 10ZHU H SH, TU CH, SHAN G C, et al. Dependence of temperature coefficient of frequency (TCF) on crystallog- raphy and eigenmode in N-doped silicon contour mode micromechanical resonators[ J]. Sensors and Actuators A : Physical, 2014, 215: 189-196. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部