期刊文献+

Dragonfly Interaction Algorithm for Optimization of Queuing Delay in Industrial Wireless Networks

原文传递
导出
摘要 In industrial wireless networks,data transmitted from source to destination are highly repetitive.This often leads to the queuing of the data,and poor management of the queued data results in excessive delays,increased energy consumption,and packet loss.Therefore,a nature-inspired-based Dragonfly Interaction Optimization Algorithm(DMOA)is proposed for optimization of the queue delay in industrial wireless networks.The term“interaction”herein used is the characterization of the“flying movement”of the dragonfly towards damselflies(female dragonflies)for mating.As a result,interaction is represented as the flow of transmitted data packets,or traffic,from the source to the base station.This includes each and every feature of dragonfly movement as well as awareness of the rival dragonflies,predators,and damselflies for the desired optimization of the queue delay.These features are juxtaposed as noise and interference,which are further used in the calculation of industrial wireless metrics:latency,error rate(reliability),throughput,energy efficiency,and fairness for the optimization of the queue delay.Statistical analysis,convergence analysis,the Wilcoxon test,the Friedman test,and the classical as well as the 2014 IEEE Congress of Evolutionary Computation(CEC)on the benchmark functions are also used for the evaluation of DMOA in terms of its robustness and efficiency.The results demonstrate the robustness of the proposed algorithm for both classical and benchmarking functions of the IEEE CEC 2014.Furthermore,the accuracy and efficacy of DMOA were demonstrated by means of the convergence rate,Wilcoxon testing,and ANOVA.Moreover,fairness using Jain’s index in queue delay optimization in terms of throughput and latency,along with computational complexity,is also evaluated and compared with other algorithms.Simulation results show that DMOA exceeds other bio-inspired optimization algorithms in terms of fairness in queue delay management and average packet loss.The proposed algorithm is also evaluated for the con
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期447-485,共39页 仿生工程学报(英文版)
基金 supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2018R1A6A1A03024003) the MSIT(Ministry of Science and ICT),Korea,under the Innovative Human Resource Development for Local Intellectualization support program(IITP-2023-2020-0-01612)supervised by the IITP(Institute for Information&communications TechnologyPlanning&Evaluation).
  • 相关文献

参考文献1

二级参考文献12

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部