期刊文献+

不平衡数据集梯度提升算法研究

下载PDF
导出
摘要 随着机器学习在各个领域的应用不断扩大,处理不平衡数据集的挑战越发显著。不平衡数据集的问题在医学诊断、信用欺诈检测和工业质检等领域广泛存在,提高对不平衡数据集的处理能力至关重要。本文构建XGBoost、LightGBM和CatBoost三种预测分类模型,通过调整参数,使用AUC值作为评分标准,并对比各分类模型在该数据集上的表现情况。
出处 《微型计算机》 2024年第3期67-69,共3页 MicroComputer
  • 相关文献

参考文献3

二级参考文献32

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部