摘要
稀土层状氢氧化物在保留无机层状化合物离子交换性、可插层性及可剥离性的基础上,拥有稀土离子独特的光、电、磁及催化性能,具有广泛的应用场景,是近年来无机层状化合物研究的热点。本文围绕稀土层状氢氧化物(LRHs)的研究发展历程,主要综述了LRHs的结构特性、可控合成和纳米片剥离,以及现阶段在透明陶瓷及薄膜制备中的应用,重点关注基于LRHs制备陶瓷材料技术的发展及优越性,总结了LRHs及其作为前驱体制备的功能陶瓷的结构及物化特性,展望了未来LRHs高效合成及结构设计的研究方向,为今后LRHs在更多领域的规模化应用提供参考。
Layered rare-earth hydroxides(LRHs)exhibit some characteristics of inorganic layered compounds(i.e.,ion exchange,intercalation,and nanosheets exfoliation).LRHs possess the unique optical,electrical,magnetic,and catalytic properties of rare-earth ions.Therefore,LRHs as inorganic layered compounds have a wide range of potential applications and have attracted recent attention.The intercalated anions of LRHs readily exchange with various anions,and subsequently,nanosheets are exfoliated from the host layers.Two-dimensional nanosheets can maximize the physicochemical properties of the host layers under specific conditions.Under specific conditions,two-dimensional nanosheets can demonstrate the physicochemical properties of the host layers.LRHs nanosheets serve as effective building blocks for constructing novel functional materials.This review represented recent research progress on the LRHs,mainly on the structure characteristics,controllable synthesis methods,and nanosheet exfoliation.This review also highlighted the existing applications of LRHs in transparent ceramics and thin film fabrication.The structural and physicochemical properties of functional ceramics prepared using LRHs were summarized,and some insights into future research directions for efficient LRH synthesis and structural design were given,providing a reference for the potential applications of LRHs in various fields.LRHs are a novel class of anionic layered compounds,which can be synthesiszed via homogeneous precipitation and hydrothermal reaction as the most commonly used and effective synthesis techniques.A variety of LRHs pure phases are synthesized via precipitation.The hydrothermal method offers some advantages like high product purity,crystallinity,and minimal contamination.LRHs with different phases and morphologies can be prepared via controlling the hydrothermal synthesis conditions.A one-step synthesis technique for ultrathin LRHs nanosheets is developed by controlling the synthesis temperature.LRHs combine the characteristics of inorga
作者
郭皓
张涛
朱琦
GUO Hao;ZHANG Tao;ZHU Qi(Shenyang National Laboratory for Materials Science,Northeastern University,Shenyang 110819,China;Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,Northeastern University,Shenyang 110819,China)
出处
《硅酸盐学报》
EI
CAS
CSCD
北大核心
2024年第3期1100-1116,共17页
Journal of The Chinese Ceramic Society
基金
国家自然科学基金52371057,U21A2045。
关键词
稀土层状氢氧化物
纳米片剥离
透明陶瓷
透明陶瓷薄膜
rare-earth layered hydroxides
nanosheets exfoliation
transparent ceramics
transparent ceramic film