期刊文献+

Advances of machine learning in materials science: Ideas and techniques

原文传递
导出
摘要 In this big data era, the use of large dataset in conjunction with machine learning (ML) has been increasingly popular in both industry and academia. In recent times, the field of materials science is also undergoing a big data revolution, with large database and repositories appearing everywhere. Traditionally, materials science is a trial-and-error field, in both the computational and experimental departments. With the advent of machine learning-based techniques, there has been a paradigm shift: materials can now be screened quickly using ML models and even generated based on materials with similar properties;ML has also quietly infiltrated many sub-disciplinary under materials science. However, ML remains relatively new to the field and is expanding its wing quickly. There are a plethora of readily-available big data architectures and abundance of ML models and software;The call to integrate all these elements in a comprehensive research procedure is becoming an important direction of material science research. In this review, we attempt to provide an introduction and reference of ML to materials scientists, covering as much as possible the commonly used methods and applications, and discussing the future possibilities.
出处 《Frontiers of physics》 SCIE CSCD 2024年第1期155-194,共40页 物理学前沿(英文版)
基金 supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(No.FRGS/1/2021/STG05/XMU/01/1).
  • 相关文献

参考文献9

二级参考文献101

  • 1Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, and Segawa Y 1998 Appl. Phys. Lett. 72 3270. 被引量:1
  • 2?zgür ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dog?n S, Avrutin V, Cho S J and Morko? H 2005 J. Appl. Phys. 98 041301. 被引量:1
  • 3Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Stat. Sol. (a) 201 2203. 被引量:1
  • 4Walle C G V D 2000 Phys. Rev. Lett. 85 1012. 被引量:1
  • 5Prze'zdziecka E, Kami'nska E, Korona K P, Dynowska E, WDobrowolski, Jakiela R, Klopotowski L and Kossut J 2007 Semi. Sci. Tech. 22 10. 被引量:1
  • 6Yao B, Xie Y P, Cong C X, Zhao H J, Sui Y R, Yang T and He Q 2009 J. Phys. D: Appl. Phys. 42 015407. 被引量:1
  • 7Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 87 152101. 被引量:1
  • 8Tang L, Wang B, Zhang Y and Gu Y 2001 Mater. Sci. Eng. B 176 548. 被引量:1
  • 9Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B. 66 073202. 被引量:1
  • 10Gai Y Q, Yao B, Wei Z P, Li Y F, Lu Y M, Shen D Z, Zhang J Y, Zhao D X, Fan X W, Li J and Xia J B 2008 Appl. Phys. Lett. 92 062110. 被引量:1

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部